
1

BIO/CS 423 Computational Biology

Spring 2024

Course Handouts

Dr. Tammy VanDeGrift

Name: _________________________

If found, call/email:_____________________

2

3

HANDOUTS – Please bring this booklet to all class sessions

For latest calendar and syllabus: see Moodle (learning.up.edu)

Welcome to BIO/CS 423

4

Lab Instructions

1. Software: All lab software is installed on the windows engineering build, accessible via
desktop.up.edu. It is also installed on the computers available in Shiley 206 – our assigned classroom
and the open computer lab in Shiley 208.

2. Prelabs: Prelabs are to be completed individually and are due at the start of the lab day. Prelabs are
designed to ensure you have the background knowledge of concepts from class, the textbook, and other
resources.

3. Lab work sessions: You are expected to attend the class sessions for lab days. You will work with
another student during the lab days to complete lab checkpoints. In some cases, you will work in groups
of three. The lab groups will be posted prior to each lab session and may be adjusted due to absences.

4. Lab communication: You are expected to work collaboratively on the labs and ask questions of the
instructor. The instructor is happy to look at your work as you make progress.

5. Questions: If you have a question during the lab, please ask in the instructor.

6. Lab exercises: You and your partner should download the lab handout and insert your responses in-
line with the questions/activities. You and your partner(s) will work through lab exercises together.
Some labs may be finished during the class session and some may be longer, which will require you to
finish the lab outside class time.

7. Lab submissions: Submit work for the lab write-up as pdf file along with any code/test tiles as a .zip
file to Moodle by the deadline. The expectation is that pairings will complete the work together outside
class time. Check Moodle for lab deadlines.

8. Late days: You have two free late days to submit prelabs and/or labs late. You may submit two items
up to 24 hours late or submit one item up to 48 hours late. For partnered labs, all members will be
“charged” late days for late work. However, if one partner has remaining late days and one partner does
not, you may use the maximum late days of both partners.

5

Course Design for Learning

Learning +
Labs

Videos / Reading; Class
activities

Prelab

Lab

Exam

(after 3 to 4 labs)

Semester
Project

Project preferences

Team formation

Project background

Project updates

Code reviews

Paper, Poster, Video

Demos

Resume Comp Bio
resume

Application
Comp Bio
resume

Biotech
briefing

Infographic
Brief

presentation

6

First look at python

#!/usr/bin/env python

demo code for first day of CS 423

sequence = "ATCGATTCG"

firstC = sequence.find("C")

print(firstC)

look at iteration

count = 0

while count < 10:

 print("I like programming")

 count = count + 1

for c in sequence:

 print(c)

for i in range(10): #iterate 10 times

 print(i)

for i in range(2,10):

 print(i)

for j in range(2,len(sequence)):

 print(sequence[j])

In general, when processing strings, try to use built-in string functions

rather than writing loops. String functions are faster.

Top line shows path to the python

executable, so this can be run as a

script in addition to IDLE

7

First Lecture Activities

Open up the python documentation in case you need help: https://docs.python.org/3/index.html

There is a brief guide to python on pages 11 to 13 for you to review, too.

Activity 1: With a partner, write a python script called percentA.py that defines a DNA sequence

(you can choose the DNA sequence bases – it need not match below) and prints the overall percentage

of adenine (A) nucleotides.

Hint: check out the len, count, and str functions

sequence = “ATCGATTCG”

numA =

print()

Activity 2: With a partner, write a python script called third.py that defines a function called

everyThird that takes in a string called sequence as a parameter. The function should print out every

third character in the string, starting with the 0th character. For example, if the input string is

“computers”, then it should print the letters c, p, and e. Call the function at the bottom of the script to

test it.

def everyThird(sequence):

https://docs.python.org/3/index.html

8

Activity 3: Below are two versions of functions to convert the content of a FASTA file into a string. A

FASTA file is a specific text file format where the first line starts with the “>” character and contains file

notes on that first line. The remaining lines of the file contain biological data characters, such as DNA

nucleotides. Read through both versions and mark the differences. This function will be part of lab 1.

Reading from FASTA files will be a common task in the course.

Do you have any questions about the code?

#!/usr/bin/env python

convertFileToSequence - takes a FASTA file and returns the

DNA sequence as a string

opens file and explicity closes file

def convertFileToSequence(filename):

 clean = -1 # used for determining output

 # read in file

 file = open(filename, 'r')

 try:

 # read in first line

 header = file.readline()

 if (header[0] == '>'):

 print("in FASTA format")

 clean = 1

 # read rest of file

 sequence = file.read()

 # remove all return and newline characters

 sequence = sequence.replace("\r", "")

 sequence = sequence.replace("\n", "")

 else:

 print("invalid format")

 finally:

 # close file

 file.close()

 if(clean == -1): return -1 # so other functions can check

 return sequence

9

convertFileToSequence2 - takes a FASTA file and returns the

DNA sequence as a string

uses handy file handling code that automatically closes the

file when leaving with block

def convertFileToSequence2(filename):

 clean = -1

 with open(filename, 'r') as file:

 # read in first line

 header = file.readline()

 if (header[0] == '>'):

 print("in FASTA format")

 clean = 1

 # read rest of file

 sequence = file.read()

 # remove all return and newline characters

 sequence = sequence.replace("\r", "")

 sequence = sequence.replace("\n", "")

 else:

 print("invalid format")

 if(clean == -1): return -1 # so other functions can check

 return sequence

10

11

Quick python reference: files, randomness, lists, math, keyboard input

You should take some time to review the python documentation here:

Python standard library information: https://docs.python.org/3/library/

All documentation: https://docs.python.org/3/

Files
file = open(filename) ## opens file (not append mode)

file = open(filename, ‘a’) ## opens file in append mode

file = open(filename, ‘w’) ## opens file in write mode

with open(filename) as file: ## automatically closes file at end of block

file.read() ## reads entire file and returns the string

file.write(value) ## writes value to file

file.readline() ## reads one line of the file and returns it as a

string

file.close() ## closes file – be sure to do this when you are

finished with it or use the with control structure

 Note: You may need to put “\r\n” in a string to write to a file to get the newline on Windows

Random Numbers
import random # to load the methods for generating random numbers

random.random() # generates floating point number in [0.0, 1.0)

random.randint(start, stop) # generates random integer in [start, stop]

random.randrange(int) # generates random integer in [0, int-1]

random.gauss(mu, sigma) # generates random number from Gaussian distribution

 # with mean mu and standard deviation sigma

random.shuffle(list) # returns a shuffled version of the list

 # many others that can be found in the documentation

Lists

This is a collection in python; similar to an array in Java, but with the following differences:

- Items need not be the same type

- Can use + to combine lists

Example:
aList = [“hi”, 4, 7.5, “bye”]

alist[0] # returns “hi”

Unlike strings, lists are mutable objects in python:
aList[2] = 8.5 # now, aList is [“hi”, 4, 8.5, “bye”]

Operators on Lists
+ combines two lists into a single list

* concatenates list number of times given by second argument

in just like with strings, returns True if item is in list

 “hi” in aList returns True

https://docs.python.org/3/library/
https://docs.python.org/3/

12

not in returns opposite of in

len(list) returns size of list

[start:end] returns sublist starting at position start and up to but not including

end

Methods on Lists:
list.append(item) # adds item to end of list

list.insert(i, item) # puts item in ith position and shifts others

list.pop() # removes and returns last item

list.pop(i) # removes and returns ith item

list.reverse() # reverses list

list.index(item) # returns index of first occurrence of item

list.count(item) # returns number of times item appears in list

list.remove(item) # removes first occurrence of item

list.sort() # sorts list (as long as items in list are comparable)

max(list) # returns maximum element in list

min(list) # returns minimum element in list

Input from keyboard:
userInput = input(“Enter your name: ”) # will prompt user and store what they type

into userInput as a string

Math

There is a math module (see documentation for all math functions)

Need to import module if you want to use these functions:

import math

Similar to what you find on a calculator:

math.cos(val)

math.sin(val)

math.sqrt(val)

math.fabs(val) # absolute value

math.pi # constant

math.e # constant

math.floor(val)

math.ceil(val) …. many more

Program Organization, Compilation, and Execution

By the way, python can be written in object-oriented style, but we will mostly use the procedural

approach for now. But, as programs get bigger and more complex, it might make sense to write OO

code.

You can define your functions in a python file and execute functions below those (so define at the top

and use at the bottom). You could also define your functions in one file and import that file in a different

file that calls those functions.

13

You can run your python program outside the interpreter with a Linux shell command (that’s what the

first line helps you do). In a shell, just type the name of the python code:

$ lab1.py

$./lab1.py if . is not in your path

You can also run your python program from a Windows shell like this:

$ python lab1.py

Frequently Asked Questions

1. What is the .py file?

 This is where you define your python code.

2. What is the .pyc file?

When you first import a module, python may create a .pyc file that is compiled python byte

code to help speed up execution. If the .pyc has the same timestamp as the .py file, the .pyc is used. If

they are different, the .py file is reread/recompiled. You may not see these get created.

3. Why is the top line #!/usr/bin/env python?

 If you run your python scripts outside IDLE or another IDE and run it from a shell, this tells the

shell environment where to find the python executable.

14

Molecular Biology

See Moodle resources – guest lecture by Dr. Susan Murray, Biology

Space for Notes:

15

16

17

Intro to Algorithms: Single Pile Nim

Two-player game

Rule: On the player’s turn, he/she can cross out 1, 2, or 3 boxes.

Winner: The player who crosses out the final box.

1. Choose a partner and play the game, once in each other’s coursepack. Give each partner the chance

to start the game.

2. What is the winning “strategy”?

18

19

Two Pile Nim

Two-player game

Rule: On the player’s turn, he/she can cross out any number of boxes from 1 to the number that remain

open in a single pile.

Winner: The person who crosses out the final box.

To play: Draw as many boxes as you would like to start in each pile. Then play the game.

1. With your partner and play the game, once in each other’s coursepack. Give each partner the chance

to start the game.

2. What is the winning “strategy”?

20

#!/usr/bin/env python

#Code to demonstrate running time of two different implementations

#Lecture 6

#CS 423

#Activity: Assume sequence has N nucleotides. Assume there are P instances

#of substring TATAAA in sequence.

#How many nucleotides are examined or copied in each function below?

#Give your answer in terms of N and P.

idea: keep searching from previously found substring

def TATAPosition(sequence):

 foundPos = sequence.find("TATAAA", 0) #start searching from position 0

 while(foundPos >= 0): #stop once find returns -1

 print(foundPos)

 foundPos = sequence.find("TATAAA", foundPos + 1)

 # start search from string index (foundPos + 1)

idea: every time the substring is found, remove the first part of the sequence

def TATAPosition2(sequence):

 offset = 0

 position = sequence.find("TATAAA") #find first occurrence of TATAAA

 while(position >= 0): #keep going if found an occurrence

 print(position + offset)

 offset = position + offset + 1

 sequence = sequence[position + 1:len(sequence)]

 position = sequence.find("TATAAA")

code to execute

sequence = "AAAATATAAAGGGCCTATAAATATAAAAAATATAATATAAATATAAACCCCCTATAAA"

#sequence = "GGCCTTAAGG"

#sequence = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATATAAAGGGG"

TATAPosition(sequence)

TATAPosition2(sequence)

21

Code Runtime Analysis (see prior page)

Activity: Assume sequence has N nucleotides. Assume there are P instances of substring TATAAA in

sequence.

1. How many nucleotides are examined or copied in TATAPosition? Give your answer in terms of N

and P.

2. How many nucleotides are examined or copied in TATAPosition2? Give your answer in terms of N

and P.

22

Motifs and Profiles

Table 1: Positions 3 – 9 of CRP site in E. coli

TTGTGGC

TTTTGAT

AAGTGTC

ATTTGCA

CTGTGAG

ATGCAAA

GTGTTAA

ATTTGAA

TTGTGAT

ATTTATT

ACGTGAT

ATGTGAG

TTGTGAG

CTGTAAC

CTGTGAA

TTGTGAC

GCCTGAC

TTGTGAT

TTGTGAT

GTGTGAA

CTGTGAC

ATGCGAC

TTGTGAG

Do you see a pattern?

Table 2: Profile of CRP site

 3 4 5 6 7 8 9

A .35 .043 0 .043 .13 .83 .26

C .17 .087 .043 .043 0 .043 .3

G .13 0 .78 0 .83 .043 .17

T .35 .87 .17 .91 .043 .087 .26

Table 3: LLR weight matrix of CRP site

 3 4 5 6 7 8 9

A .48 -2.5 -inf -2.5 -.94 1.7 .061

C -.52 -1.5 -2.5 -2.5 -inf -2.5 .28

G -.94 -inf 1.6 -inf 1.7 -2.5 -.52

T .48 1.8 -.52 1.9 -2.5 -1.5 .061

23

Practice – motif for start codon:

Hypothetical translation start sites (In general “ATG” is the start codon for a gene, but it turns out that it

could be “GTG” or “TTG”). Here’s an example profile for the start codon. Answer the questions below.

 1 2 3

A .625 0 0

C 0 0 0

G .25 0 1

T .125 1 0

a. P(ATG is a start codon) =

b. P(GTG is a start codon) =

c. P(CTG is a start codon) =

d. Likelihood Ratio(ATG is a start codon given uniform background distribution of

nucleotides) =

e. Likelihood Ratio(GTG is a start codon given uniform distribution) =

f. Likelihood Ratio(CTG is a start codon given uniform distribution) =

g. Complete the weight matrix of LLRs below for the start codon site [you will likely need a

calculator]. Assume a uniform background distribution for nucleotides.

 1 2 3

A

C

G

T

h. LLR(ATG) =

i. LLR(GTG) =

j. LLR(CTG) =

24

Practice:

Create your own motif profile of any length (3 to 6 nucleotides) and determine the probabilities,

likelihood ratios, and log likelihood ratios.

25

Mutations

Figure 1: DNA nucleotide bonds

Figure 2: Amino acid substitutions over time for three proteins

26

Distance Metrics

 Hamming distance = H = # of differences between the two strings

Proportion distance = p distance = H = # differences

length of string

What is the H distance for the top two strings in Table 1? ____________

What is the p distance for the top two strings in Table 1? ____________

Table 1: Sequence Evolution (bold are changes, underscore are final changes)

ACCATGGAATTTTATACCCT

AGCATGGTATTTTATACGCT

AGCATCGAAATTTATACGAT

ATCATGGAAATTAATACCAT

ATCATGCAATATAATACCAG

27

Jukes Cantor Correction

Table 2: Substitution rates for DNA nucleotides

 A C G T

A (1-3a) a a a

C a (1-3a) a a

G a a (1-3a) a

T a a a (1-3a)

For any nucleotide, the probability of a substitution at a given time is 3a (add up the probabilities in a

single column). Over a period of time t, the number of substitutions is 3at.

Since we are looking at a model such that the sequences diverge from a common sequence, there is a

rate of 3at on each branch. Thus, the actual rate of substitutions (K) that take place over time t is 3at +

3at (one for each branch). K = 6at.

But, we don’t get to observe all the substitutions, since some may change and change back to the

original. We need an estimate for the “actual” rate of substitutions, but we don’t know the value for ‘a’

and we don’t know the value for ‘t’. Hmmm…

What we want:

K = actual rate of substitutions = (correction factor) * (p distance)

Derivation of Jukes Cantor Correction Factor:

Probability that nucleotide/residue will be the same at time (t+1) given time (t):

= (Probability that it is residue r)(Probability that it was residue r at time t) +

 (Probability that it changes to r)(Probability that it was a different nucleotide at time t)

Psame(t+1) = (1-3a)Psame(t) + a(1-Psame(t))

Solving with differential equations, we get:

Pii(t) = Prob(nucleotide stays the same at time t) = ¼ + ¾(e-4at)

Pij(t) = Prob(nucleotide goes from i to j at time t) = ¼ - ¼(e-4at)

Now, we can compute the probability that two sequences differ at a given position:

p = 1 – (probability they are identical)

p = 1 – (prob of both staying the same + prob of both changing to same base)

28

p = 1 – [(PAA(t))(PAA(t)) + (PAT(t))(PAT(t)) + (PAC(t))(PAC(t)) + (PAG(t))(PAG(t))]

Substituting the values from above, we get:

p = 1 – [(¼ + ¾(e-4at))(¼ + ¾(e-4at)) + 3[(¼ - ¼(e-4at))(¼ - ¼(e-4at))]]

p = 1 – [[1/16+ 3/16(e-4at) + 3/16(e-4at)] + 9/16(e-8at)] + 3[(1/16 – 1/16(e-4at) – 1/16(e-4at) +

1/16(e-8at)]

p = 1 – [(1/16 + 6/16(e-4at) + 9/16(e-8at)] + 3[(1/16 – 2/16(e-4at) + 1/16(e-8at)]

p = 1 – [(1/16 + 3/16) + (6/16 -6/16)(e-4at) + (9/16 + 3/16(e-8at))]

p = 1 – [1/4 + 12/16(e-8at)]

p = 1 – [¼ + ¾(e-8at)]

p = ¾ - ¾(e-8at)

p = ¾ (1 - e-8at)

Now, rearranging to isolate the term 8at:

(4/3)p = (1- e-8at)

e-8at = 1 – (4/3)p

-8at = ln(1-(4/3)p)

8at = -ln(1-(4/3)p)

Since, we know the number of substitutions from a single source is K = 6at, we can determine K by

taking ¾ of the value for 8at:

K = -3/4 ln(1 – (4/3) p)

This is the Jukes Cantor correction for DNA mutations.

Example

If we find that that the proportion distance p is: .2 for two DNA sequences, then

K = -3/4 ln(1 – (4/3)*.2)

K = .2326 # so this gives us an estimate of the actual rate of change

 # not just the observed substitution rate

 # makes sense, since there are “hidden” changes, so K should be bigger than .2

What about amino acid changes?

These are more complicated since the probability of each change is not 0.25 like it is in DNA. If we

extend the math to amino acids, the correction would be K = (-19/20) ln (1 – (20/19)p). However, amino

acid substitutions are usually modeled from actual data. The PAM and BLOSUM matrices showcase

scores of amino acid substitutions.

29

Practice With Distance Calculations

In small groups, complete the following questions:

Calculating sequence differences
Assume these are two DNA sequences that evolved from a common ancestral sequence:

AATTGCTAGACTACTTAGGG

ATATGCGAGACTTGTTCCGG

1. What is the Hamming distance? H = __________________

2. What is the p distance? p = ______________________

3. What is the Jukes Cantor estimate? K = ___________________
 K = -3/4 ln(1 – (4/3) p)

4. Given that the sequence has 20 nucleotides, the estimate K is for the rate of change at a single
position. Using K, how many nucleotide substitutions are estimated? _________________

30

Intro to Sequence Alignment

A. Why would we want to align DNA sequences to see if they are similar?

Example: multiple sclerosis

Hypothesis: T cells (normally identify foreign agents in the body) mistakenly identify the proteins in the

nerve’s myelin sheaths as foreign

B. How would you test this hypothesis?

C. Consider the following DNA sequences:

ATATATATA

TATATATAT

What is the Hamming distance for these sequences? ____________________

D. But, how really different are these sequences?

E. Assume you have the following operations: delete one nucleotide, insert one nucleotide, and

substitute one nucleotide for another (D, I, S). How many operations does it take to make the sequences

in part C have a Hamming distance of 0? _____________

F. How many operations (D, I, S) does it take to get from the following top sequence to the bottom

sequence?

TGCATAT

ATCCGAT

____________________ What are those operations?

31

G. Given two strings (sequences of characters from the same alphabet), what is the optimal alignment of

those sequences?

Example:

s1 = ACGCTG

s2 = CATGT

How would you align these to have the most matches?

Example 1 alignment:

A C - - G C T G

- C A T G - T -

Example 2 alignment:

A C G C T G -

- C - A T G T

When aligning, the widest this will be is N + M where N and M are the lengths of the strings.

How wide is alignment 1? _________

How wide is alignment 2? _________

Qualitatively, which do you think is a better alignment? ____________________

Vocabulary:

Match: column with same letter

Mismatch: column with differing letters

Insertion: column with space on top

Deletion: column with space on bottom

Indel: insertion or deletion

In immediate above example, the C/A column is a mismatch, the C/C column is a match, the A/- column is a

deletion, the -/T column is an insertion.

In the alignments above, circle all mismatches. Put rectangle around all insertions. Put squiggles around

all deletions.

32

H. Also need a way to “score” the alignment, so we can determine the optimal alignment. For simplicity,

let’s assume every match is worth 2 points and every mismatch is worth -1. Then, in the example in part

G, the score is -1 + 2 + -1 + -1 + 2 + -1 + 2 + -1 = 1.

Let d(x,y) be the score of aligning symbols x and y.

The length of a string S, denoted by |S| is the number of symbols in S. We’ll denote the symbols of S as

S[0], S[1], S[2]…etc.

An alignment A between strings S and T maps them into strings S’ and T’ where S’ and T’ may contain

space characters, where:

 |S’| = |T’|

 The removal of spaces in S’ gives the string S and the removal of spaces in T’ gives the string T

The alignment score of A, aligning strings S and T is:

∑ 𝑑(𝑆′[𝑖], 𝑇′[𝑖]

𝑛−1

𝑖=0

)

add together the distance for each character in the alignment; n is the total width of the aligned

sequences

I. String alignment problem (formalized):

Given two strings S and T (sequences of characters from the same alphabet), what is the optimal

(maximum scoring) alignment of S and T?

Can you think of an obvious algorithm to solve the string alignment problem?

How long does your algorithm take (assume sequence S has N characters and assume sequence T has N

characters?

33

34

String Alignment and Intro to Dynamic Programming

String Alignment Overview

Given two strings S and T (sequences of characters from the same alphabet), what is the optimal

(maximum scoring) alignment of S and T?

A. Can you think of an obvious algorithm for the string alignment problem (from last lecture)?

Idea: look at all possible “aligned” subsequences of each string where the other parts match up with

dashes on the other string

|S| = n

For all i, 0 <= i <= n do

 For all subsequences A of S with |A| = i do

 For all subsequences B of T with |B| = i do

 Form an alignment that matches A[k] with B[k] 0 <= k < i

 And matches all other characters with dashes

 Determine the score of this alignment

 Keep maximum alignment

Return maximum alignment

B. But, what is the running time of this algorithm?

Outer loop: runs n times

 For all subsequences A of S: (n choose i) subsequences with length i

 For all subsequences B of T: (n choose i) subsequences with length i

 Forming alignment: (2n – i) characters long [since there are n characters in S and

 (n – i) unmatched characters with T]

So, we have a running time of:

∑ (𝑛
𝑖
)𝑛

𝑖=0 (𝑛
𝑖
) ∗ (2𝑛 − 𝑖) >

𝑛 ∗ ∑ (𝑛
𝑖
)𝑛

𝑖=0 (𝑛
𝑖
) = 𝑛 ∗ (2𝑛

𝑛
) > 22𝑛 for n > 3 // Stirling’s approximation

This running time is not feasible in practice, so we need to do better. We will use a computing

technique called dynamic programming.

35

Manhattan Problem (Example of Dynamic Programming)

Manhattan Problem: Find the highest weight path in a weighted grid (graph) from a start node to an end

node.

Graph is like blocks in the city – can travel east and south. Each edge on the block has a weight (cost).

Start

 End

C. Can you find the path with the highest weight?

Let’s label each vertex as [i][j] where Start is at position [0][0] and the one to the right of start is position

[0][1]. The max total cost from the start to vertex at [i][j] is stored as v[i][j].

We’ll create a table that contains the highest scoring path to each of the vertices:

Table of Costs from Start to each Vertex (First row completed):

0 3 5 9 9

The top row is simply the cost of the path along the top line.

3 2 4 0

1 0 2 4 3

3 2 4 2

4 6 5 2 1
0 7 3 4

4 4 5 2 1

3 3 0 2

5 6 8 5 3

1 3 2 2

36

Table of Costs from Start to each Vertex (Left column and first row completed):

0 3 5 9 9

1

5

9

14

The left column is simply the cost of the path along the left line of the graph.

Now, to fill in the rest of the table:

v[i][j] = max v[i-1][j] + weight of edge from v[i-1][j] to v[i][j]

 v[i][j-1] + weight of edge from v[i][j-1] to v[i][j]

D. Final Table (complete the entries above in the table)

Manhattan Algorithm:

Input: G is a graph n nodes wide and m nodes tall with weights along edges with start node at [0,0] and

end node at [n-1,m-1]

v[0][0] = 0

for j = 1 to (n-1): // fill in top row

 v[0][j] = v[0][j-1] + weight([0][j-1] to [0][j])

for i = 1 to (m-1): // fill in left column

 v[i][0] = v[i-1][0] + weight([i-1][0] to [i][0])

for i = 1 to (m-1): // fill in middle cells

 for j = 1 to (n-1):

v[i][j] = max v[i-1][j] + weight([i-1][j] to [i][j])

 v[i][j-1] + weight([i][j-1] to [i][j])

return v[n-1][m-1] // highest scoring path

E. What is the running time of the Manhattan algorithm assuming the graph is n nodes wide and m

nodes tall?

O()

37

38

Global String Alignment

Problem: Given two strings, S and T, what is the alignment with the maximum score and what is the

score?

Example Input: What alignment is the optimal alignment for the following DNA sequences:

> DNA Sequence 1

ACTGCGATTGACGTACGATCATCGTACGATCATCATGCTGAGCTATCATCATCGTACTGA

TCGTAGACTACGTAGCTAGCATGCAGTCTGATGACGTCATGCTGACGTAGCATGC

> DNA Sequence 2

GACTAGCAGCGAGAGATCTCTCGAGTATGCGAGAGCTGATGCATCTACGTATGCAGTCGT

GCTAATGCGAGCGTATACGCGGGCATGTAGAGACTTCCTAGTAC

Shorter Example: Suppose we want to align:

AGCGTTA

ACGTGA

Table 1: Dynamic programming table for global string alignment

 A G C G T T A

A

C

G X

T

G y

A

x represents the best score for aligning AGCG and ACG

y represents the best score for aligning AG and ACGTG

What does each table entry mean?

 The north cell represents: aligning the left sequence’s last character with a gap

The west cell represents: aligning the top sequence’s last character with a gap

The northwest cell represents: aligning the last character of each sequence together

Let c[I,j] be the cell entry in the ith row and jth column.

g = gap penalty (insertion or deletion)

m = match/mismatch score

39

Global Alignment Algorithm:
c[0][0] = 0 // no alignment

for i from 1 to p // fill in gap penalties in left column

 c[i][0] = g*i

for j from 1 to q // fill in gap penalties in top row

 c[0][j] = g*j

for i from 1 to p // fill in table left to right, top to bottom

 for j from 1 to q

c[i][j] = max(c[i][j-1] + g, c[i-1][j] + g, c[i-1][j-1] + m)

return c[p][q]

Example:

Let’s assume these costs:

g = -6, match = 5, mismatch = -4

We want to align:

AGCGTTA

ACGTGA

Complete the table (left column done for you):

 A G C G T T A

 0

A -6

C -12

G -18

T -24

G -30

A -36

So, the optimal score is 15 for these two sequences. Now, how do we actually get the alignment? We

figure out from which direction the maximum value came from in the table.

15 came from 10 + 5 at the end, so:

A

|

A

Then, 10 came from 14 – 4: (diagonal), so:

TA

||

GA

Then, 14 came from 9 + 5 (diagonal), so:

TTA

40

|||

TGA

Then, 9 came from 4 + 5 (diagonal), so:

GTTA

||||

GTGA

Then, 4 came from -1 + 5 (diagonally), so:

CGTTA

|||||

CGTGA

Then, -1 came from 5 – 6 (left), so:

GCGTTA

||||||

-CGTGA

Then, 5 came from 0 + 5 (diagonal), so:

AGCGTTA

A-CGTGA

There, we have it! So, not only should we keep track of the table values, we should keep another table

that holds from which direction the maximum value came from.

What is the running time for this global alignment algorithm, if S has length N and T has length M?

O()

Now, you try aligning these with scoring system: g = -6, match = 5, mismatch = -4

 T A T G C T

 0

T

G

A

C

A

G

T

What is the optimal alignment score?

41

What about aligning these two sequences?

---TGGTAGATTC-C--CACGAGATCTACCGAG-TATGAGTAGGGGGAC-GTTCGCT-C-GG

| || | | | ||||||||| |||||| |||||||| || | || | | ||

GCCT-CTA-ACACACTGCACGAGATCAACCGAGATATGAGTA---ATACAG—CGGTACGGG

The score for this alignment is 60. But, what if we were really looking for the best substring of the one

sequence aligned with the best substring of the second sequence?

 Global alignment: align complete strings

 Local alignment: align best matching substrings

Best local alignment of sequences above has a score of 105:

CACGAGATCTACCGAG-TATGAGTA

||||||||| |||||| ||||||||

CACGAGATCAACCGAGATATGAGTA

42

43

Local String Alignment

Given two strings, S and T, what is the maximum alignment among any substrings S’ of S and any

substrings T’ of T?

c – table storing alignment costs

d – table storing alignment directions (F, L, T, D)

Algorithm:
c[0][0] = 0 // no alignment

d[0][0] = “F” // start location of alignment

maxValue = 0 // max value of alignment found

maxRowPos = 0 // to keep track of the location of the maximum alignment

maxColPos = 0

for i from 1 to p // fill in gap penalties in left column

 c[i][0] = 0

 d[i][0] = “F”

for j from 1 to q // fill in gap penalties in top row

 c[0][j] = 0

 d[0][j] = “F”

for i from 1 to p // fill in table left to right, top to bottom

 for j from 1 to q

c[i][j] = max(0, c[i][j-1] + g, c[i-1][j] + g, c[i-1][j-1] + m)

//add 0 for choice to start new alignment

d[i][j] = “F”, “L”, “T”, or “D” – wherever max value came from

// “F” is if max is 0

if(c[i][j] > maxValue)

 maxValue = c[i][j]

 maxRowPos = i

 maxColPos = j

return c[maxRowPos][maxColPos]

Note: The only major differences between global and local alignment is that we can restart the optimal

alignment at any time (hence, the 0 as part of the max). Also, the optimal alignment may end at any

position in the table, so we find the maximum value of all table entries as the maximum local alignment

score. Recovering the alignment follows the same process as global alignment.

44

Use the scores: g = -6 match = 5 mismatch = -4

Table 1: Complete the cost table below following the local alignment algorithm

 A G A T C A C

 0 0 0 0 0 0 0 0

C 0

G 0

A 0

C 0

A 0

G 0

Table 2: Complete the direction table below

 A G A T C A C

 F

C

G

A

C

A

G

What is the optimal alignment and cost?

45

Longest Common Subsequence

Given two strings S and T, what is the longest common subsequence between the two strings?

(In biology, this is important if we want to find the longest sequence of DNA that is exactly the same and

in the same order in two strings.)

Assume S = S[1]S[2]S[3]…S[q] //note: in python strings start with index 0

Assume T = T[1]T[2]T[3]…T[p]

Algorithm
c[0][0] = 0 // no alignment

d[0][0] = “F” // start location of LCS

for i from 1 to p // fill in left column

 c[i][0] = 0

 d[i][0] = “F”

for j from 1 to q // fill in right column

 c[0][j] = 0

 d[0][j] = “F”

for i from 1 to p // fill in table left to right, top to bottom

 for j from 1 to q

 if T[i] == S[j] // have a match

c[i][j] = max(c[i][j-1], c[i-1][j], c[i-1][j-1] + 1)

 else

 c[i][j] = max(c[i][j-1], c[i-1][j])

d[i][j] = “L”, “T”, or “D” – wherever max value came from

return c[p][q]

Note: this is the global alignment algorithm except we do not penalize gaps and we add one for a match.

46

Table 3: Complete the cost table for LCS

 A G A T C A C

 0 0 0 0 0 0 0 0

C 0

G 0

A 0

C 0

A 0

G 0

Table 4: Complete the direction table

 A G A T C A C

 F F F F F F F F

C F

G F

A F

C F

A F

G F

What is the longest common subsequence and its length?

47

48

Global alignment with affine gaps

In biology, a long gap in a string alignment might be due to a single copying error. Instead of penalizing

each gap with score g, the affine gap model has a gap opening score and a gap extension score.

ATC--GA

ATCCCGA

For the alignment above in the regular model, each gap has an alignment score of -6, but the CC may

have resulted from a single insertion or a single deletion.

Suppose the gap opening (GO) score is -7 and the gap extension (GE) score is -2. With the affine gap

model, a gap with length 3 has an alignment score of (-7 + -2 + -2 + -2) = -13.

Input: strings S and T, where |S| = n, |T| = m

Algorithm Idea:

Keep track of four tables (S across top, T down left side):

c is the best alignment cost (like our cost table earlier)

e is the best alignment cost where the best score is matching char in S with “-“

f is the best alignment cost where the best score is matching “-“ with char in T

g is the best alignment cost where the best score matches char in S with char in T

 Note: we need the extra tables to extend the gap score correctly.

Global Alignment Algorithm (affine gap penalty)

Initialize tables:

c[0][0] = 0

c[i][0] = GO + GE*i // fill left column, i from 1 to m

c[0][j] = GO + GE*j // fill top row, j from 1 to n

e[i][0] = -inf // fill left column, i from 1 to m

f[0][j] = -inf // fill top row, j from 1 to n

Fill in tables, i from 1 to m, j from 1 to n:

g[i][j] = c[i-1][j-1] + m // score for last char in S aligned with last char in T

e[i][j] = max(e[i][j-1] + GE, c[i][j-1] + GO + GE) // max of new gap or extending gap with char in S

f[i][j] = max(f[i-1][j] + GE, c[i-1][j] + GO + GE) // max of new gap or extending gap with char in T

c[i][j] = max(g[i][j], e[i][j], f[I][j]) // best cost for alignment

 Note: reconstructing the alignment -- know from which table max came from.

 Note: can use this model with local alignment (just need to look for max value in table)

49

 GO = -7, GE = -2, match = 5, mismatch = -4

c table

 A G A T T T C

 0 -9 -11 -13 -15 -17 -19 -21

C -9 (top) -4 -13 -15 -17 -19 -21 -14

C -11 (top) -13 -8 -17 -19 -21 -23 -16

A -13 -6 (g) -15 -3 -12 -14 -16 -18

G -15 -15 -1 (g) -10 -7 -14 -16 -18

A -17 -10 -10 4 (g) -5 (e) * -7 (e) -9 (e) -11

C -19 -19 -12 -5 0 -9 -11 -4 (g)

* comes from max(-5, -16, -14)

e table

 A G A T T T C

 -inf

C -inf -18 -13 -15 -17 -19 -21 -23

C -inf -20 -22 -17 -19 -21 -23 -25

A -inf -22 -15 -17 -12 -14 -16 -18

G -inf -24 -24 -10 -12 -14 -16 -18

A -inf -26 -19 -19 -5 * -7 -9 -11

C -inf -28 -28 -21 -14 -9 -11 -13

* comes from max(-19 + (-2), 4 + (-7) + (-2)) = -5

f table

 A G A T T T C

 -inf -inf -inf -inf -inf -inf -inf -inf

C -18 -20 -22 -24 -26 -28 -30

C -13 -22 -24 -26 -28 -30 -23

A -15 -17 -26 -28 -30 -32 -25

G -15 -19 -12 -21 -23 -25 -27

A -17 -10 -14 -16 * -23 -25 -27

C -19 -12 -5 -14 -16 -18 -20

* comes from max(-21 + (-2), -7 + (-7) + (-2)) = -16

g table

 A G A T T T C

C -4 -13 -15 -17 -19 -21 -14

C -13 -8 -17 -19 -21 -23 -16

A -6 -17 -3 -21 -23 -25 -27

G -17 -1 -19 -7 -16 -18 -20

A -10 -19 4 -14 * -11 -18 -20

C -21 -14 -14 0 -9 -11 -4

* comes from -10 + (-4) [cost in NW cell in c table + cost of mismatch)

50

--AGATTTC

CCAGA---C

Matches: 20 GapTop: -11 GapBottom: -13

Total score: -4

51

BLAST (Basic Local Alignment Search Tool)

1. Suppose you have just discovered a new gene, whose associated protein is 1000 amino acids in

length. You are curious to see if this protein sequence is similar to proteins in other organisms. The

database includes 1000 organisms with average genome length of 1M (1,000,000) amino acids.

How long will it take to do the local alignment algorithm that we saw for aligning two DNA sequences?

(Note that the local alignment algorithm could be extended to align protein sequences, with 20

characters instead of 4 DNA nucleotides.)

Hmmm, this seems like it would take too long. BLAST to the rescue. BLAST does local alignment

heuristically (faster, but not necessarily optimal).

Here is the URL for BLAST: http://blast.ncbi.nlm.nih.gov/Blast.cgi

2. BLAST includes nucleotide matching, protein matching, and translated nucleotide matching. We will

focus first on protein blast (search protein database using a protein query).

Here’s how BLASTp works with protein sequences:

1. Database sequences are pre-tagged and scored
2. Your query string is broken into words of length 6 (by default, can set word length to 2 or 3 in

query in algorithm parameters)
3. Similar words to query words meeting a certain threshold are found in the database sequences
4. Extensions to pairs of matches are found (high-scoring segment pairs HSPs)
5. The local alignment between high scoring matches is reported.

Example of BLASTp:

Your query protein: LWGFAHAYHESKWAAHNQEILTPLV

Breaking query string into words

The query string is split into words of length 3:

LWG

WGF

GFA

…..

http://blast.ncbi.nlm.nih.gov/Blast.cgi

52

Scores of words

Each of these words (note: there are 20*20*20 distinct words) has a score with other words. Similar

words with scores greater than some threshold T (default is 11) are retained for querying. BLOSUM62

matrix is used for alignment scores by default. Look at the row/column of the aligned amino acids in the

words to get score. Each number in BLOSUM62 is added together for the total score.

Assume the query sequence has word LWG. Calculate similar word scores to LWG below.

a. What is the score of the word LWG using BLOSUM62? _______________

b. What is the score of the word IWG using BLOSUM62? _____________________

c. What is the score of the word MWG using BLOSUM62? ____________________

d. What is the score of the word VWG using BLOSUM62? ___________________

e. What is the score of the word LYG using BLOSUM62? _____________________

f. What is the score of the word FWS using BLOSUM62? ____________________

Finding similar words

Words scoring >= threshold (default 11) are located in the database (note: database is indexed for quick

retrieval of locations of each word).

If two word pairs from the query string are found in the database within a certain distance A (A = 40 for

protein blasts) from each other, then the pair is determined a “hit”.

Hit extensions and alignment

The hits are then extended in each direction (left and right), aligning it with the query sequence until the

alignment score starts decreasing (current version blast also does gaps with penalties, opening penalty

of 11 and extension penalty of 1 by default).

Sequences with high alignment scores are reported along with the alignment.

3. Try it: Run BLASTp with an input sequence (example yeast protein YBL105C on Moodle).

a. Look at the results. What is the best scoring sequence? ____________________________

b. Look at the match with organism Zygosaccharomyces bailii CLIB 213. What do you think the +

represents between F and Y in the first two aligned AAs?

__

c. In the same match with Zygosaccharomyces bailii CLIB 213, how many of the AAs are identical?

_________ How many are positive? ________________ How many are gaps? ______________

53

4. Now that you have seen how to run a BLASTp query, let’s discuss the results. Remember, this

algorithm is a heuristic – it finds high-scoring alignments, but sacrifices optimality for speed. So, how do

you know if the similarity score is meaningful? What would you determine as a “high-scoring” match in

BLAST?

54

BLAST Statistics

E value – expected number of alignments with optimal local alignment score of S or higher in a random

database (basically gives us the number of expected false positives)

Lower E values are better (means the sequence that BLAST found is less likely to have occurred by

chance).

E = Kmne(-LS)

m = length of query string

n = size of database

K = constant based on extreme value distribution for alignment scores

L = constant based on extreme value distribution for alignment scores

S = alignment score

If S is bigger, what happens to E? _______________________________

If m is bigger (query is longer), what happens to E? __________________________

If n is bigger (database is bigger), what happens to E? ______________________________

bit scores

A raw score is just the score computed given the alignment. A bit score is a normalized score of

alignments (kind of like standard deviation). The bit scores can then be compared across searches.

Let S be the raw alignment score. The bit score S’ is defined as follows:

S’ = (LS – ln K) / ln(2)

There is a relationship between E and S’, just based on mathematical substitution:

E = mn2(-S’)

There is also a relationship with p:

p = probability that an alignment occurs by chance against random database with score S or better

p = 1 – e(-E) // e is the natural number

So, the bigger the E (# of alignments by chance), p is ___________________.

The smaller the E, p is _____________________.

55

BLAST uses the E value since it is easier the reason about the number of expected alignments scoring S

or better that would occur by chance rather than the chance of getting an alignment score at least S.

The L and K values are given by the extreme value distribution. There are different distributions for

different conditions: affine gap penalties, linear gap penalties, shorter sequences (alignment scores will

be smaller), and longer sequences.

Derivation of E:

𝐸 = 𝑘𝑚𝑛𝑒(−𝐿𝑆)

−𝐿𝑆 = −𝑙𝑛𝑘 − 𝑙𝑛2 ∗ 𝑆′ [𝑓𝑟𝑜𝑚 𝑑𝑒𝑓𝑛 𝑜𝑓 𝑆′ = (𝐿𝑆 − 𝑙𝑛𝑘)/𝑙𝑛2)]

𝐸 = 𝑘𝑚𝑛𝑒(−𝑙𝑛𝑘−𝑙𝑛2∗𝑆′)

𝐸 = 𝑘𝑚𝑛𝑒−(𝑙𝑛𝑘) 𝑒−𝑙𝑛2∗𝑆′

𝐸 =
𝑘𝑚𝑛

𝑘
∗ 2−𝑆′

𝐸 = 𝑚𝑛 ∗ 2−𝑆′

56

Matrix made by matblas from blosum62.iij

* column uses minimum score

BLOSUM Clustered Scoring Matrix in 1/2 Bit Units

Blocks Database = /data/blocks_5.0/blocks.dat

Cluster Percentage: >= 62

Entropy = 0.6979, Expected = -0.5209

 A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 1

57

Multiple Sequence Alignment

Problem: Given k strings (such as DNA or proteins), what is the best multiple global alignment and

alignment cost?

Here’s an example alignment of 3 strings:

--T--AC-C-AGT--TATGT-CAGGGGAC

AATTGCCGCC-GTCGT-T-TTCAG----C

-ATTGC-G--ATTCGTAT------GGGAC

 Figure 1: Cost table t for aligning three strings

Assume S1 = a1a2a3….aM

Assume S2 = b1b2b3…bN

Assume S3 = c1c2c3…cP

We create a cost table t of size (M+1) x (N+1) x (P+1). [Note: Also need to keep direction table to

reconstruct alignment]

1. In the above 3-sequence alignment example, circle an aligned character set where they are all the

same.

2. In the above 3-sequence alignment example, put a rectangle around an aligned character set where

there are two sequences with a common character and the third sequence has a gap.

S1

S2

S3

0 -6 -12 -18 …….

-6

-12

…

58

3. In the above 3-sequence alignment example, put an arrow toward an aligned character set where

there are sequences with mismatched characters.

4. What are the possible character alignments for 3 sequences?

Algorithm for multiple global alignment for three strings (with no affine gaps):

t[0][0][0] = 0

Fill in top row with i * cost(ai, -, -).

The table above shows c((ai, -, -)) = -6.

Fill in left column with j * cost(-, bj, -).

The table above shows c((-, bj, -)) = -6.

Fill in left column top row (depth of cube) with k * cost(-, -, ck).

The table above shows c((-, -, ck)) = -6.

Fill in table cells t[i][j][k] (i, j, k > 0) as:

max of the following 7 values:

 t[i-1][j][k] + c((ai, -, -))

 t[i][j-1][k] + c((-, bj, -))

 t[i][j][k-1] + c((-, -, ck))

 t[i-1][j-1][k] + c((ai, bj, -))

 t[i-1][j][k-1] + c((ai, -, ck))

 t[i][j-1][k-1] + c((-, bj, ck))

 t[i-1][j-1][k-1] + c((ai, bj, ck))

The best global alignment score for the three sequences is in t[M][N][P]. To recreate the

alignments, use three-dimensional direction table (now each cell can be calculated from one of seven

directions).

5. What is the running time of calculating the optimal alignment between 3 sequences of lengths M, N,

and P, respectively?

59

6. Now, what would be the running time this multiple sequence alignment algorithm for 100 sequences,

each with length ~N?

7. Is this a practical approach for aligning several sequences?

Go to heuristics…

8. What idea(s) do you have for aligning 100 DNA sequences together in a faster way than the algorithm

described above?

60

Ideas:

Idea 1: Calculate pairwise alignment scores for the K choose 2 sequences, where K = the number of

sequences to align. Then combine distances and alignments together.

Example:

Best between 1 and 2:

AAAATTTT----

----TTTTGGGG

Best between 1 and 3:

----AAAATTTT

GGGGAAAA----

Best between 2 and 3:

TTTTGGGG----

----GGGGAAAA

9. What is the best overall alignment between the 3 sequences?

Idea 2:

a) Calculate pairwise alignments between each pair of sequences.

b) Perform alignment with most similar pair (highest global alignment score). Lock in this

alignment. (So, if there is a gap or match/mismatch in that paired alignment, that will

persist in the overall multiple sequence alignment).

c) For the rest of the (K-1) sequences, align the sequence that is most similar to one of the

already aligned sequences in the growing alignment.

This is what the original CLUSTAL algorithm does.

CLUSTAL OMEGA extends CLUSTAL to allow the user to specify an external profile for alignment.

61

62

UPGMA Algorithm

Problem: Given n x n matrix of pairwise relationships between organisms, construct an evolutionary

tree.

Suppose you found global alignment scores of a common gene in 11 organisms:

> Yeast YOR020c

mstllksaksivplmdrvlvqrikaqaktasglylpe

knveklnqaevvavgpgftdangnkvvpqvkvgdqvl

ipqfggstiklgnddevilfrdaeilakiakd

> Neurospora crassa

mattvrsvksliplldrvlvqrvkaeaktasgiflpe

ssvkdlneakvlavgpgaldkdgkrlpmgvnagdrvl

ipqyggspvkvgeeeytlfrdseilakiae

> Aspergillus nidulans

msllrnvknlaplldrvlvqrvkpeaktasgiflpes

svkeqneakvlavgpgavdrngqripmgvaagdrvlv

pqfggsplkigeeeyhlfrdseilakine

> Schizosaccharomyces pombe (fission yeast)

matklksaksivplldrilvqrikadtktasgiflpe

ksveklsegrvisvgkggynkegklaqpsvavgdrvl

lpayggsnikvgeeeyslyrdhellaiike

> Mortierella alpina

masritkfsktivpmmdrvlvqrikpqqktasgiyip

ekaqealnegyvvavgkglttqegkvvpselaegdkv

llppyggsvvkvdneelilfreseilakiq

> Crypthecodinium cohnii

matgiakrftplldrvlvqrlkpeaktasglflpesa

akapnyatvlavgpggrtrdgdilpmnvkvgdkvvvp

eyggmtlkfedeefqvfrdadimgilne

> Drosophila melanogaster

maaaikkiipmldriliqraealtktkggivlpekav

gkvlegtvlavgpgtrnastgnhipigvkegdrvllp

efggtkvnlegdqkelflfresdilakle

> Homo sapiens

agqafrkflplfdrvlversaaetvtkggimlpeksq

gkvlqatvvavgsgskgkggeiqpvsvkvgdkvllpe

yggtkvvlddkdyflfrdgxilgky

> Geobacillus stearothermophilus

vlkplgdrvvievieteektasgivlpdtakekpqeg

rvvavgkgrvldsgervapevevgdriifskyagtev

kydgkeylilresdilavig

> Mycobacterium tuberculosis

makvnikpledkilvqaneaetttasglvipdtakek

pqegtvvavgpgrwdedgekripldvaegdtviysky

ggteikyngeeylilsardvlavvsk

> Mus musculus (house mouse)

magqafrkflllfdrvlversaaetvtkggimlpeks

qgkvlqatvvavgsggkgksgeiepvsvkvgdkvllp

eyggtkvvlddkdyflfrdsdilgkyvn

63

Table 1: Pairwise alignment scores between species

Yeast Neur Asp Schiz Mort Cryp Dros Human Geo Myco Mus

 49 46 78 45 55 54 44 38 37 42 Yeast

 52 41 40 43 46 44 41 39 43 Neur

 43 48 45 45 40 40 38 39 Asp

 42 53 55 41 41 40 40 Schiz

 43 46 40 43 38 39 Mort

 61 43 34 36 45 Cryp

 49 42 36 49 Dros

 37 32 93 Human

 59 38 Geo

 32 Myco

 Mus

Approach: UPGMA – Unweighted Pair Group Method with Arithmetic mean to build evolutionary tree

UPGMA Algorithm:

 First, assume each organism is in its own group

 Until there is one group,

Merge together closest groups (using mean score)

Define closest as highest mean score between groups. Let S be the score between organism i and

organism j.

mean(G1, G2) = Σi,j S(i,j) where i is in G1 and j is in G2

 |G1| * |G2|

Example of the algorithm applied to Table 1 data

1. Merge human and mus (since maximum score is 93 in the table).

human mus

2. Merge yeast and schiz [score = 78]

human mus yeast schiz

64

3. Merge cryp and dros [score = 61]

human mus yeast schiz cryp dros

4. Merge myco and geo [score = 59]

human mus yeast schiz cryp dros myco geo

5. Next best score is {yeast, schiz} with {cryp, dros} [mean score = (55 + 54 + 53 + 55) / 4 = 54.25]

human mus yeast schiz cryp dros myco geo

6. Merge nuero and asp [score = 52]

human mus yeast schiz cryp dros myco geo neuro asp

65

7. Next best is {myco, geo} with {yeast, schiz, cryp, dros} [mean score = (37 + 78 + 55 + 54 + 38 + 41 + 34

+ 42)/8 = 47.3]

human mus yeast schiz cryp dros myco geo neuro asp

8. Next best is {neuro, asp} with {yeast, schiz, cryp, dros, myco, geo} [mean score = 43.4]

human mus yeast schiz cryp dros myco geo neuro asp

9. Next best is {yeast, schiz, cryp, dros, myco, geo, neuro, asp} with {mort} [mean score = 43.1]

human mus mort yeast schiz cryp dros myco geo neuro asp

66

10. Final merge is {human, mus} with {mort, yeast, schiz, cryp, dros, neuro, asp, myco, and geo}.

human mus mort yeast schiz cryp dros myco geo neuro asp

67

Example UPGMA Algorithm when using distances between organisms
In the matrix with global alignment scores, higher numbers are better. But, in a distance matrix, lower

numbers mean organisms are more closely related. With distance matrices, we can make the lengths of

the tree branches mean the distance between the groups.

The height of a tree branch for G1 and G2 when combining groups G1 and G2 is: D(G1, G2) / 2. Some

software programs will not divide by 2, so the height of just one branch indicates the distance.

Try one with distances as the matrix contents among 5 organisms:

A B C D E

 3 1 3 2 A

 4 3 4 B

 2 5 C

 4 D

 E

1. Merge A and C (distance is 1, which is the smallest on the table)

 .5

A C D B E

2. B with (A, C) is 3.5, B with D is 3, B with E is 4, D with E is 4, D with (A,C) is 2.5, E with (A,C) is 3.5

Best is D with (A, C).

.75 1.25

 .5

A C D B E

68

3. B with E is 4. (A, C, D) with B is 3.333, (A, C, D) with E is 3.66.

Best is (A, C, D) with B.

 .42

.75 1.25 1.67

 .5

A C D B E

4. (A, C, D, B) with E has cost 3.75.

 .2

 1.875

 .42

.75 1.25 1.67

 .5

A C D B E

Note: This tree creation algorithm assumes a constant evolutionary clock. But the height can give us an

indication of time (assuming a constant clock).

69

Practice: Build the tree with the following distance matrix

A B C D E

 1 3 4 7 A

 8 6 2 B

 9 5 C

 3.5 D

 E

70

Phylogenetic Trees Overview

Question 1: Why are phylogenetic (evolutionary) trees helpful to construct?

Words: Phylogenetic trees have several names: guide trees, evolutionary trees, phylograms, cladograms

Draw an example phylogenetic tree here:

Interpretation:

• Some trees have a root; the root is the most recent common ancestor of the organisms in the

tree.

• Some trees do not have a root. They just show relationships between organisms. These trees do

not make assumptions about common ancestry.

• Internal nodes are hypothetical taxonomic units (HTUs).

• Leaf nodes (terminal nodes) are operational taxonomic units (OTUs).

Terminology:

• A clade is a single common ancestor and its decendants.

• A tree may be scaled, where the length of a branch denotes distance. This is called a phylogram.

• A tree may be unscaled, where the lengths of branches do not mean anything. The tree just

shows relationships of ancestry. This is called a cladogram.

71

Question 2: Based on the tree below, is the frog more closely related to the fish or the human?

Fish Frog Lizard Mouse Human

Question 3: Can you draw an equivalent tree to the one in question 2 where the tree looks different?

Question 4: Before bioinformatics, how were evolutionary trees constructed?

Biology example: before genetic data, humans were less related to chimpanzees.

72

Neighbor Joining Algorithm

Problem: Given a set of pairwise distances between organisms (also called taxa), find an unrooted tree

with the organisms as the leaves of the tree.

Solution: UPGMA is one way to solve this problem, but this algorithm creates rooted trees. Another

method is called Neighbor Joining (NJ), where at each step an internal node of the tree is created based

on minimizing the distance between the joined taxa (groups) and maximizing the distances to all other

taxa (groups). Note that in UPGMA, the algorithm seeks to only minimize the distance between the

joined groups.

Algorithm:

Given: a distance matrix D (containing the pairwise distances between groups), N is the number

of groups

Create a star tree T with a central hub and all groups connected via an edge to the hub

while N >= 3:

 Step 1: For each group i, calculate the net divergence Ri from i to all other groups

 Ri = Di1 + Di2 + … + DiN

 Note: if Dij is not in the matrix, look for Dji instead

Step 2: Calculate a new score matrix M where Mij = Dij – [(Ri + Rj)/(N– 2)]

 (Note: this Mij value is the distance between i and j minus the distances to all

 other groups, so finding the minimum Mij gives us close distance between i and j

 and far distances to all other groups.)

 Step 3: Choose groups p and r where Mpr is the smallest. Create an internal node in T

 called u where new edges are added between u and p and u and r.

 The edge distances can be calculated as follows:

 Epu = (Dpr / 2) + [(Rp – Ru)/(2(N-2)]

 Eru = Dpr – Epu // the remaining distance, if either should be negative

 // give the extra length to the other edge

 Step 4: Define new distances from new node u to every other group i

 Diu = (Dpi + Dri – Dpr)/ 2

 Step 5: N = N-1

73

Example:

Suppose we have six organisms (or groups or OTUs – operational taxonomic unit) with the following

distance matrix:

Table 1: Distance matrix D for six organisms (smaller numbers mean closer-related organisms)

A B C D E F

 5 4 7 6 8 A

 7 10 9 11 B

 7 6 8 C

 5 9 D

 8 E

 F

N = 6

T: A

 B C

 D F

 E

First iteration N= 6:

Step 1:

RA = 5 + 4 + 7 + 6 + 8 = 30

RB = 5 + 7 + 10 + 9 + 11 = 42

RC = 4 + 7 + 7 + 6 + 8 = 32

RD = 7 + 10 + 7 + 5 + 9 = 38

RE = 6 + 9 + 6 + 5 + 8 = 34

RF = 8 + 11 + 8 + 9 + 8 = 44

74

Step 2:

Matrix M. Let’s look at the calculation for MAB:

MAB = DAB – (RA + RB)/(N-2)

MAB = 5 – (30 + 42)/4

MAB = 5 – (72/4) = 5 – 18 = -13

Table 2: Matrix M of scores between groups

A B C D E F

 -13 -11.5 -10 -10 -10.5 A

 -11.5 -10 -10 -10.5 B

 -10.5 -10.5 -11 C

 -13 -11.5 D

 -11.5 E

 F

Step 3: Choose the smallest M value (-13). We could join groups A and B or D and E. We’ll arbitrarily

choose A and B to join.

Calculate distance of tree branches:

EAU = (DAB / 2) + [(RA – RB)/(2(N-2)]

EAU = (5/2) + (30-42)/(2*4) = 2.5 – 1.5 = 1

EBU = DAB – EAU

EBU = 5 – 1 = 4

 B

T:

 4 A C

 1

 D F

 E

75

Step 4:

Let U be the group of {A, B}.

General formula for calculating distances from U to other nodes: Diu = (Dpi + Dri – Dpr)/ 2

DCU = (DAC + DBC – DAB) / 2 = (4 + 7 – 5) / 2 = 3

DDU = (DAD + DBD – DAB) / 2 = 6

DEU = (DAE + DBE – DAB)/2 = 5

DFU = (DAF + DBF – DAB)/2 = 7

 New matrix D:

Table 3: Matrix D at the end of the first iteration

U C D E F

 3 6 5 7 U

 7 6 8 C

 5 9 D

 8 E

 F

Second Iteration: N = 5

Step 1:

RU = 3 + 6 + 5 + 7 = 21

RC = 3 + 7 + 6 + 8 = 24

RD = 6 + 7 + 5 + 9 = 27

RE = 5 + 6 + 5 + 8 = 24

RF = 7 + 8 + 9 + 8 = 32

Step 2:

Mij = Dij – [(Ri + Rj)/(N– 2)]

76

Table 4: Matrix M in second iteration

U C D E F

 -12 -10 -10 -10.67 U

 -10 -10 -10.67 C

 -12 -10.67 D

 -10.67 E

 F

Step 3: Choose the smallest M value (-12). We could join groups C and U or D and E. We’ll arbitrarily

choose C and U to join.

Calculate distance of tree branches:

ECQ = (DCU / 2) + [(RC – RU)/(2(N-2)]

ECQ = (3/2) + 3/(2*3) = 2

EUQ = DCU – ECQ

EUQ = 3 – 2 = 1

 B

T:

 4 A

 1

 C

 1 2

 D F

 E

77

Step 4:

Let Q be the group of {U, C}.

DiQ = (DUi + DCi – DUC)/ 2

DDQ = (DUD + DCD – DUC) / 2 = 5

DEQ = (DUE + DCE – DUC)/2 = 4

DFQ = (DUF + DCF – DUC)/2 = 6

 New matrix D:

Table 5: Matrix D at the end of the second iteration

Q D E F

 5 4 6 Q

 5 9 D

 8 E

 F

Third Iteration: N = 4

Step 1:

RQ = 5 + 4 + 6 = 15

RD = 5 + 5 + 9 = 19

RE = 4 + 5 + 8 = 17

RF = 6 + 9 + 8 = 23

Step 2:

Mij = Dij – [(Ri + Rj)/(N– 2)]

Table 6: Matrix M in third iteration

Q D E F

 -12 -12 -13 Q

 -13 -12 D

 -12 E

 F

78

Step 3: Choose the smallest M value (-13). We could join groups F and Q or D and E. We’ll arbitrarily

choose D and E to join.

Calculate distance of tree branches:

EDP = (DDE / 2) + [(RD – RE)/(2(N-2)]

EDP = (5/2) + (19-17)/4 = 2.5 + .5 = 3

EEP = DDE – EDP

EEP = 5 – 3 = 2

 B

T:

 4 A

 1

 C

 1 2

 D 3 F

 2

 E

Step 4:

Let P be the group of {D, E}.

DiP = (DDi + DEi – DDE)/ 2

DQP = (DDQ + DEQ – DDE) / 2 = 2

DFP = (DDF + DEF – DDE)/2 = 6

 New matrix D:

Table 7: Matrix D at the end of the third iteration

Q P F

 2 6 Q

 6 P

 F

79

Fourth Iteration: N = 3

Step 1:

RQ = 2 + 6 = 8

RP = 2 + 6 = 8

RF = 6 + 6 = 12

Step 2:

Mij = Dij – [(Ri + Rj)/(N– 2)]

Table 8: Matrix M in fourth iteration

Q P F

 -14 -14 Q

 -14 P

 F

Step 3: Choose the smallest M value (-14). We could join any of the groups. We’ll arbitrarily choose to

join P and F.

Calculate distance of tree branches:

EPR = (DPF / 2) + [(RP – RF)/(2(N-2)]

EPR = (6/2) + (8-12)/2 = 3 – 2 = 1

EFR = DPF – EPR

EFR = 6 – 1 = 5

 B

T:

 4 A

 1

 C

 1 2

 1

 D 3 5 F

 2

 E

80

Step 4:

Let R be the group of {P, F}.

DiR = (DPi + DFi – DPF)/ 2

DQR = (DPQ + DFQ – DPF) / 2 = (2 + 6 – 2) / 2 = 3

 New matrix D:

Table 9: Matrix D at the end of the fourth iteration

Q R

 3 Q

 R

DONE

Final Tree:

 B

T:

 4 A

 1

 C

 1 2

 3

 1

 D 3 5 F

 2

 E

81

Table 10: Original Distances

A B C D E F

 5 4 7 6 8 A

 7 10 9 11 B

 7 6 8 C

 5 9 D

 8 E

 F

Let’s see how close the tree is to the original distances:

A and B is 5 //correct

A and C is 4 //correct

A and D is 9 //7

A and E is 8 //6

A and F is 11 //8

C and B is 7 //correct

B and D is 12 //10

E and B is 11 //9

F and B is 13 //11

D and C is 9 //7

E and C is 8 //6

F and C is 10 //8

E and D is 5 //correct

F and D is 9 //correct

F and E is 8 //correct

What is the runtime of neighbor joining? ________________

What happens to the matrix each iteration?____________________________________

Is neighbor joining greedy? __________________

Is neighbor joining optimal? ________________

82

Maximum Parsimony for Building Trees

1. How many different rooted trees are there for 2 organisms?

2. How many different rooted trees are there for 3 organisms?

3. How many different unrooted trees are there for 3 organisms?

4. How many different unrooted trees are there for 4 organisms?

5. How many possible trees are there if we want to search for the optimal tree showing relationships

among organisms?

Table 1: Number of unrooted and rooted trees given the number of OTUs

OTUs (organisms) # Unrooted trees # Rooted trees

2 1 1

3 1 3

4 3 15

5 15 105

6 105 945

7 954 10395

8 10395 135135

9 135135 34459425

10 34459425 2.13 x 10^(15)

83

Maximum parsimony method: choose the tree that requires the fewest evolutionary events

(substitutions) to explain the sequences at the tree leaves.

Example: Suppose we have a multiple sequence alignment of DNA from 4 organisms (OTUs) and we

want to build the maximum parsimony tree.

Let’s look at the three different trees for site #3 below in the sequences.

Input Site #

Seq # 1 2 3 4 5 6 7 8 9

1 A A G A G T T C A

2 A G C C G T T C T

3 A G A T A T C C A

4 A G A G A T C C T

Let’s look at site 3 and build the 3 possible trees showing the relationships among the four organisms.

 1 G C 2

 A A This tree has 2 changes along edges

 3 A A 4

 1 G A 3

 C A This tree has 2 changes along edges

 2 C A 4

 1 G C 2

 A A This tree has 2 changes along edges

 4 A A 3

Thus, this site gives no useful information, since no tree is better than the others.

Maximum Parsimony:

Step 1: Identify informative sites

An informative site is one in which there are at least two different characters at the site, each of which is

represented by at least two different sequences.

84

In the example above with the four sequences, which site(s) is/are informative?

Step 2: Build all possible trees for every informative site.

 Site 5:

 1 G G 2

 A A Tree 1 has 2 changes

 3 A A 4

 1 G A 3

 G A Tree 2 has 1 change

 2 G A 4

 1 G G 2

 A A Tree 3 has 2 changes

 4 A A 3

Site 7:

 1 T T 2

 T T Tree 1 has 2 changes

 3 C C 4

 1 T C 3

 T C Tree 2 has 1 change

 2 T C 4

 1 T T 2

 T T Tree 3 has 2 changes

 4 C C 3

85

Site 9:

 1 A T 2

 A T Tree 1 has 1 change

 3 A T 4

 1 A A 3

 A A Tree 2 has 2 changes

 2 T T 4

 1 A T 2

 T T Tree 3 has 2 changes

 4 T A 3

Step 3: Calculate minimum scoring tree by summing the number of changes for each tree over all sites.

 Site

 5 7 9 SUM

Tree1 2 2 1 5

Tree2 1 1 2 4

Tree3 2 2 2 6

Tree2 is the best tree for these four sequences.

Output of maximum parsimony algorithm:

 1 3

 2 4

Note: If we use maximum parsimony for 5 organisms (OTUs), we would generate the 15 possible trees

for each informative site and choose the best tree. At some point, this exhaustive search technique can

no longer be applied due to the huge number of possible trees. Then, we can resort to heuristics for

throwing away (pruning) bad trees and extending/modifying the good trees.

How can we tell if the tree we get is robust?

Well, in computational biology, we cannot always verify the accuracy of the results of our heuristics. The

trees that are created are just hypotheses. One way we can see if a tree is robust is to do the following:

86

1. Start with original data and original tree produced
2. For 1000 times

a. Randomly re-sample sites with replacement
b. Build tree with re-sampled data
c. Determine if each clade in original tree is observed in the tree from the random re-

sampling
3. Calculate frequency with which each clade appears in the trees
4. If frequency > 70%, the clade designation is robust.

example:

Original sequence data:

 Site #

Seq # 1 2 3 4 5 6 7 8 9

1 A A G A G T T C A

2 A G C C G T T C T

3 A G A T A T C C A

4 A G A G A T C C T

Re-sampled data with replacement for one of the 1000 trials (note that sites 6 and 7 are sampled twice

whereas sites 3 and 9 are not used at all – due to the randomness):

 Site #

Seq # 5 4 7 6 7 6 2 1 8

1 G A T T T T A A C

2 G C T T T T G A C

3 A T C T C T G A C

4 A G C T C T G A C

87

88

DNA Microarrays

Figure 1: Yeast genome DNA microarray

Colors show intensity of hybridization level of each probe (each spot above) to the target mRNA.

Figure 2: mRNA attaching to probes

89

Figure 3: A two-channel experiment (figure by Jeremy Buhler)

Resulting data from M experiments can be organized into a matrix, as follows:

 exp1 exp2 exp3 exp4 … expM

gene1 1.3 0.4 3.2 1.2 2.2

gene2 2.5 2.2 1.1 3.1 2

gene3 .7 0.0 0.2 0.1 4

…

…

geneN 1.1 1.4 2.6 2.4 1.7

90

Activity: Microarray Hybridization

Suppose the following 20-mer target single-stranded cDNA is washed over the DNA microarray.

5’ GUACACCGUUAACGAUGAAU 3’

Suppose the following DNA 20-mers are on the microarray. (Remember 3’ and 5’ ends)

5’ ATTCATCGTTGGCGGTGTAC 3’

How well will the target hybridize to this DNA probe? ________________

5’ TATCATTGATGGGCCTGTCC 3’

How well will the target hybridize to this DNA probe? ________________

5’ TAATCCCCAACCCGCACATG 3’

How well will the target hybridize to this DNA probe? ________________

91

RNA-seq

Similar to DNA microarrays in determining gene expression levels. It is the more common method for

gene expression experiments now.

Instead of using probes and targets, the mRNA is extracted from the cell and sequenced. These mRNA

fragments are then converted to cDNA for stability. The fragments are sequenced (read the bases at

each position). Then, the fragments are compared to libraries to determine their association to genes.

Counts are produced for each gene across each sample. Then, one can look at the fold change of

expression of a gene between samples.

 Figure from Figure 1: Overview of RNA-seq technology,

 http://biocluster.ucr.edu/~rkaundal/workshops/R_mar2016/RNAseq.html#overview-of-rna-seq

http://biocluster.ucr.edu/~rkaundal/workshops/R_mar2016/RNAseq.html#overview-of-rna-seq

92

Matrix has one gene per row.

Matrix has one sample per column.

The numbers are counts of that gene in the sample, which gives an indication of expression level. Note

that the data is still subject to noise from each stage of the RNA-seq pipeline. Usually, you want to

normalize the counts in some way so the expression levels can be comparable across samples.

93

K-means Clustering (Lloyd’s Heuristic)

Formal problem: Given N items with known distances between items and K clusters, assign the N items

into one of K clusters such that the total distance from each item to its cluster center is minimized.

(Finding the optimal set of clusters takes exponential time, so k-means is a randomized, greedy heuristic

to solve this problem more quickly.)

K-means clustering heuristic (Lloyd):

Input: n items, k = number of clusters to create

For each item, randomly assign it to one of the k clusters.

Calculate cluster centers for each cluster.

While there are new cluster assignments:

 For every item i:

 Assign i to the cluster with closest center.

 Re-compute cluster centers for each cluster.

To calculate the square of Euclidean distance from item c to item t:

D(<c1, c2, …, cm>, <t1, t2, …, tm>) = Σi [(cI – ti)2] // note that we do not need to take sqrt

 // since all distances are positive and this

 // reduces the number of computations

To find the center c from a set of items T:

center(T) = vector sum of items in T

 | T |

Example k-means clustering:

Suppose our microarray data is the following with k = 2

 exp1 exp2

gene1 0 0

gene2 0 1

gene3 1 1

gene4 1 0

gene5 .5 .5

gene6 5 5

gene7 5 6

gene8 6 6

gene9 6 5

gene10 5.5 5.5

94

Step 1: Randomly assign each item to one of two clusters:

C1 = {gene1, gene4, gene5, gene8}

C2 = {gene2, gene3, gene6, gene7, gene9, gene10}

Step 2: Calculate cluster centers:

Center(C1) = (<0, 0> + <1, 0> + <.5, .5> + <6, 6>) / 4

 = <7.5, 6.5> / 4

 = <1.875, 1.625>

Center(C2) = (<0, 1> + <1, 1> + <5, 5> + <5, 6> + <6, 5> + <5.5, 5.5>) / 6

 = <22.5, 23.5> / 6

 = <3.75, 3.917>

While no new cluster assignments:

Calculate distance from each point to cluster center to assign point to cluster:

Item Sq Distance to center C1 Sq Distance to center C2 Cluster assignment

<0, 0> 1.8752 + 1.6252 = 6.15625 3.752 + 3.9172 = 29.405 C1

<0, 1> 3.91 22.57 C1

<1, 1> 1.16 16.07 C1

<1, 0> 3.41 22.91 C1

<.5, .5> 3.15 22.24 C1

<5, 5> 21.16 2.74 C2

<5, 6> 28.91 5.90 C2

<6, 6> 36.16 9.40 C2

<6, 5> 28.41 6.24 C2

<5.5, 5.5> 28.16 5.57 C2

Calculate cluster centers:

Center(C1) = (<0, 0> + <0, 1> + <1, 1> + <1, 0> + <.5, .5>) / 5

= <.5, .5>

Center(C2) = (<5, 5> + <5, 6> + <6, 6> + <6, 5> + <5.5, 5.5>) / 5

= <5.5, 5.5>

95

Calculate distance from each point to cluster center to assign point to cluster:

Item Sq Distance to center C1 Sq Distance to center C2 Cluster assignment

<0, 0> .5 60.5 C1

<0, 1> .5 50.5 C1

<1, 1> .5 40.5 C1

<1, 0> .5 50.5 C1

<.5, .5> 0 50.0 C1

<5, 5> 40.5 .5 C2

<5, 6> 50.5 .5 C2

<6, 6> 60.5 .5 C2

<6, 5> 50.5 .5 C2

<5.5, 5.5> 50.0 0 C2

No new cluster assignments, so STOP. The final assignment is in the above table.

96

97

QT Clustering

Problem: Given N items, find the best clusters.

Note: In k-means clustering, the value of k is given as input (so the # of clusters to find must be known

before the clustering takes place).

QT (Quality Threshold) Clustering is a clustering solution that instead requires as input the maximum

diameter (distance between furthest items) for any cluster and finds clusters that do not exceed the

maximum diameter.

QT Clustering Algorithm:

Input: N items, maximum diameter for clusters

S = all N items

While S has items:

For each item i in set S of items to cluster:

 Build the largest cluster with item i by choosing the nearest item, the next nearest, etc

 until cluster diameter is exceeded

 Save the cluster with the most items as a true cluster and remove the items from S

example:

Assume the dataset is the following:

 exp1 exp2

g1 3 4

g2 3 5

g3 6 7

g4 0 2

g5 0 1

g6 2 2

Assume the maximum diameter is 3

S = {g1, g2, g3, g4, g5, g6}

For each item, find the largest cluster:

g1: {(3, 4), (3, 5)} //note: (2,2) is too far from (3,5) to be included

g2: {(3, 5), (3, 4)}

g3: {(6, 7)}

g4: {(0, 2), (0, 1), (2, 2)}

g5: {(0, 1), (0, 2), (2, 2)}

g6: {(2, 2), (0, 2), (0, 1}}

98

Choose cluster with most items: {(0, 2), (0, 1), (2, 2)} and remove these from S.

S = {g1, g2, g3}

For each item, find the largest cluster:

g1: {(3, 4), (3, 5)}

g2: {(3, 5), (3, 4)}

g3: {(6, 7)}

Choose cluster {(3, 4), (3, 5)} and remove these from S.

S = {g3}

Choose cluster {(6, 7)}.

Final Clusters: {{(0, 2), (0, 1), (2, 2)}, {(3, 4), (3, 5)}, {(6, 7)}}

99

Hierarchical Clustering

Hierarchical clustering uses the process that the UPGMA uses for creating trees. Instead of using

alignment scores as distances, we can use any items for which we have pairwise distances (such as

microarray data).

Input: distance matrix D of size n x n (for n items to cluster)

Output: a tree where each leaf is an item (so the reader can then choose appropriate cluster

membership and number of clusters by looking at the tree)

Algorithm:

1. Form n clusters, each with item as its own cluster.

2. Construct a tree T where each item is a leaf node.

3. While there is more than one cluster:

a. Find the two closest clusters Ci and Cj

b. Merge Ci and Cj to C so it has all elements from each cluster

c. Compute distance from C to other clusters

d. Add new vertex in T to link clusters CI and Cj [length of vertex to leaf is half the distance

from C1 to C2]

e. Remove rows and columns associated with Ci and Cj

f. Add new row and column for C

The way distance is calculated can vary. Among many options are the following:

 Option 1: use minimum distance between items in clusters

 Option 2: use average distance between all points in each cluster (UPGMA)

 Option 3: can use distance that tries to separate clusters (similar to neighbor joining)

 d(C*, C1) + d(C*, C2) – d(C1, C2) // when merging C1 and C2, C* is another cluster

 2

EXAMPLE:

Suppose we have 6 genes:

 exp1 exp2

G1 3 7

G2 3 5

G3 1 2

G4 0 2

G5 4 1

G6 6 2

100

Need to calculate the distance matrix – using Euclidean (input to hierarchical clustering):

G1 G2 G3 G4 G5 G6

 2 5.39 5.83 6.08 5.83 G1

 3.61 4.24 3.61 4.25 G2

 1 3.16 5 G3

 4.12 6 G4

 2.24 G5

 G6

Use metric: closest distance between closest elements in each cluster metric

Merge closest: G3 and G4

Update distances

G1 G2 G5 G6 {G3, G4}

 2 6.08 5.83 5.39 G1

 3.61 4.25 3.61 G2

 2.24 3.16 G5

 5 G6

 {G3, G4}

Merge closest: G1 and G2

1

2

3 4

5

6

101

Update distances

G5 G6 {G3, G4} {G1, G2}

 2.24 3.16 3.61 G5

 5 4.25 G6

 3.61 {G3, G4}

 {G1, G2}

Merge closest: G5 and G6

Update distances

{G3, G4} {G1, G2} {G5, G6}

 3.61 3.16 {G3, G4}

 3.61 {G1, G2}

 {G5, G6}

Merge closest: {G3, G4} with {G5, G6}

Update distances

{G1, G2} {G3, G4, G5, G6}

 3.61 {G1, G2}

 {G3, G4, G5, G6}

Merge closest: {G1, G2} with {G3, G4, G5, G6}

Overall hierarchical tree:

 .21

 .45 .8

1.08

.5 .5 1.12 1.12 1 1

G3 G4 G5 G6 G1 G2

102

Note: we could have used other metrics to determine distance between clusters. Now, you can draw a

line cutting through the tree to create 1 cluster, 2 clusters, 3 clusters, 4 clusters, 5 clusters, or 6 clusters.

Note: some software programs will make the height the actual distance instead of half the distance.

Practice:
Use K-means (K = 2) to cluster the same dataset. Need to randomly assign genes into one of two

clusters to seed the algorithm. Use a coin flip for the randomness.

 exp1 exp2

G1 3 7

G2 3 5

G3 1 2

G4 0 2

G5 4 1

G6 6 2

103

Practice:
Use QT (diameter = 3.5) to cluster the same dataset.

 exp1 exp2

G1 3 7

G2 3 5

G3 1 2

G4 0 2

G5 4 1

G6 6 2

104

Expectation-Maximization to find motifs

Assume we have five sequences for which we believe there is a common 16-mer motif:

> Escherichia coli

TTGATTCCCTGAATGCCCGCTTAGTGTAACACTACTGTAACCGGCATTTTCTGCTTTTCC

TGCCGATATTTTTTCTTATCTACCTCACAAAGGTTAGCAATAACTGCTGGGAAAATTCCG

AGTTAGTCGTTATATTCTAT

> Haemophilus influenzae

ATCTAACGGTACGGATTCTCCAAAGGCCTATGGAATCTTGTAGAATATGAAACGTTCTAA

TAAATCATAAAGTTGGAGCAAACGCTCGGCATAAGTAGTAAGTGCCGTGCCTCCGCCATT

AGTTACACTAGTGGGACACC

> Vibrio cholerae

ATTTGTGGCGGTTTTCAAATGCTTGGAGAATGGGTACATGATCCGCTTGGCATTGAAGGT

GAGGCTGGCAGCAGCGAAGGTCTGGGGCTGTTTGAACGTTACACGAGTGTAACCGCCGAA

CCATGTTGACACGAATTCTG

> Salmonella typhi

GGTCGGCTTAGACTAGTGTGACCAAAAAGCTTTTGCTGAAGTTTCAGGGTAAGAAGAACC

AGCTCCTAGTAAAAAGACTATTGTGACTGAAAAGCGCGTCAGCGCAAAGCCGACCGCACA

AAACGCACAAGGAGTTACAG

> Pseudomonas aeruginosa

ACGCGGCCAGGGTCTTCTCCTGCGAGATCATGCGCGGCGCGCCGCGCATGCCGGCGCCGC

TGCTGGAACGCCTCGACCCCAGGGCTACACTAGTTTAACCGGAACGCCGCCAGTGGATCG

GCCTGCCCCAGCTATTGCTC

How do we find the motif? If we had a profile, we could easily find the best scoring 16-mer in each

sequence. But we also need the profile.

Solution: Expectation-Maximization (EM)

Input: Set of sequences S thought to have a common motif and L, the length of the motif

Output: The motif profile and the instances of each sequence that best fit that motif profile.

Algorithm:

1. Create motif instances by randomly guessing the possible locations of the L-mer motif for

each item in S

2. Repeat until convergence:

a. Calculate a motif model given motif instances

b. For each item in S, calculate new locations for the highest-scoring motif instances

given the model generated in (a)

105

Example:

Let’s run the algorithm on the sequences above.

Step 1: Randomly guess positions of 16-mers in each sequence (these are bold and separated by spaces)

> Escherichia coli

TTGATTCCCTGAATGCCCGCTTAGTGTAACACTACTGTAACCGGCATTTTCTGCTTTTCC

TGCCGATATTTTTTCTTATCTACCTCACAAAGGTTAGCAATAACTGCTGGGAA AATTCCG

AGTTAGTCG TTATATTCTAT

> Haemophilus influenzae

A TCTAACGGTACGGATT CTCCAAAGGCCTATGGAATCTTGTAGAATATGAAACGTTCTAA

TAAATCATAAAGTTGGAGCAAACGCTCGGCATAAGTAGTAAGTGCCGTGCCTCCGCCATT

AGTTACACTAGTGGGACACC

> Vibrio cholerae

ATTTGTGGCGGTTTTCAAATGCTTGGAGAATGGGTACATGATCCGCTTGGCATTGAAGGT

GAGGCTGGCAGCAGCGAAGGTCTGGGGCTGTTTGAACGTTACACGAGTGTAACCGCCGAA

CC ATGTTGACACGAATTC TG

> Salmonella typhi

GGTCGGCTTAGACTAGTGTGACCAAAAAGCTTTTGCTGAAGTTTCAGGGTAAGAAGAACC

AGCTCCTAGTAAAAAGACTAT TGTGACTGAAAAGCGC GTCAGCGCAAAGCCGACCGCACA

AAACGCACAAGGAGTTACAG

> Pseudomonas aeruginosa

ACGCGGCCAGGGTCTTCTCCTGCGAGATCATGCGCGGCGCGCCGCGCATG CCGGCGCCGC

TGCTGG AACGCCTCGACCCCAGGGCTACACTAGTTTAACCGGAACGCCGCCAGTGGATCG

GCCTGCCCCAGCTATTGCTC

Step 2: (Repeat until convergence)

a. Calculate motif profile based on those substrings

A .40 .20 0.0 .20 .40 0.0 .20 .20 .40 .40 .20 .60 .20 .20 0.0 0.0

C .20 .40 0.0 0.0 .40 .60 .20 .40 0.0 .40 .20 0.0 .20 0.0 .20 .40

G 0.0 .20 .40 .40 0.0 .40 .40 .40 .40 0.0 .20 .40 .60 .20 .40 .40

T .40 .20 .60 .40 .20 0.0 .20 0.0 .20 .20 .40 0.0 0.0 .60 .40 .20

b. Find highest scoring instance given this motif profile in each sequence

> Escherichia coli

TTGATTCCCTGAATGCCCGCTTAGTGTAACACTACTGTAACCGGCATTTTCTGCTTTTCC

TGCCGATATTTTTTCTTATCTACCTCAC AAAGGTTAGCAATAAC TGCTGGGAAAATTCCG

AGTTAGTCGTTATATTCTAT

> Haemophilus influenzae

ATCTAACGGTACGGATTCTCCAAAGGCCTATGGAATCTTGTAGAATATGAAACGTTCTAA

TAAATCATAAAGTTGGAGCAAACGCTCG GCATAAGTAGTAAGTG CCGTGCCTCCGCCATT

AGTTACACTAGTGGGACACC

106

> Vibrio cholerae

ATTTGTGGCGGTTTTCAAATGCTTGGAGAATGGGTACATGATCCGCTTGGCATTGAAGGT

GAGGCTGGCAGCAGCGAAGGTCTGGGGCTGTTTGAACGTTACACG AGTGTAACCGCCGAA

C CATGTTGACACGAATTCTG

> Salmonella typhi

GGTCGGCTTAGACTAGTGTGACCAAAAAGCTTTTGCTGAA GTTTCAGGGTAAGAAG AACC

AGCTCCTAGTAAAAAGACTATTGTGACTGAAAAGCGCGTCAGCGCAAAGCCGACCGCACA

AAACGCACAAGGAGTTACAG

> Pseudomonas aeruginosa

ACGCGGCCAGGGTCTTCTCCTGCGAGATCATGCGCGGCGCGCCGCGCATGCCGGCGCCGC

TGCTGGAACGCCTCGACCCCAGGGCTACACTA GTTTAACCGGAACGCC GCCAGTGGATCG

GCCTGCCCCAGCTATTGCTC

a. Calculate motif profile(you complete this)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

C

G

T

b. Find highest scoring instance given this motif profile in each sequence

> Escherichia coli

TTGATTCCCTGAATGCCCGCTTAGT GTAACACTACTGTAAC CGGCATTTTCTGCTTTTCC

TGCCGATATTTTTTCTTATCTACCTCACAAAGGTTAGCAATAACTGCTGGGAAAATTCCG

AGTTAGTCGTTATATTCTAT

> Haemophilus influenzae

ATCTAACGGTACGGATTCTCCAAAGGCCTATGGAATCTTGTAGAATATGAAACGTTCTAA

TAAATCATAAAGTTGGAGCAAACGCTCGGCATAAGTAGTAAGTGCCGTGCCTCCGCCATT

A GTTACACTAGTGGGAC ACC

> Vibrio cholerae

ATTTGTGGCGGTTTTCAAATGCTTGGAGAATGGGTACATGATCCGCTTGGCATTGAAGGT

GAGGCTGGCAGCAGCGAAGGTCTGGGGCTGTTTGAAC GTTACACGAGTGTAAC CGCCGAA

CCATGTTGACACGAATTCTG

> Salmonella typhi

GGTCGG CTTAGACTAGTGTGAC CAAAAAGCTTTTGCTGAAGTTTCAGGGTAAGAAGAACC

AGCTCCTAGTAAAAAGACTATTGTGACTGAAAAGCGCGTCAGCGCAAAGCCGACCGCACA

AAACGCACAAGGAGTTACAG

> Pseudomonas aeruginosa

ACGCGGCCAGGGTCTTCTCCTGCGAGATCATGCGCGGCGCGCCGCGCATGCCGGCGCCGC

TGCTGGAACGCCTCGACCCCAGG GCTACACTAGTTTAAC CGGAACGCCGCCAGTGGATCG

GCCTGCCCCAGCTATTGCTC

107

a. Calculate motif profile

… keep going until convergence (no different instances are found)

108

Information Content

Suppose we find one or more motif models for a set of sequences. How do we know which model is

better? We can use a metric called information content (also known as relative entropy or just entropy).

Suppose we have the following motif model M, where each entry is a probability (frequency):

 1 2 3 4

A A1 A2 A3 A4

C C1 C2 C3 C4

G G1 G2 G3 G4

T T1 T2 T3 T4

Let QN be the background distribution (frequency) of nucleotide N.

The information content I of position 1 of model M is:

I1 = ∑ [MN,1 log2 (MN,1 / QN)] for N є {A, C, G, T}

Expanded out, this is:

I1 = A1 * log2(A1/QA) + C1 * log2(C1/Qc) + G1 * log2(G1/QG) + T1 * log2(T1/QT)

I2, I3, and I4 can be calculated similarly.

The total information content is simply the sum of each Ii value. In the model above, this is:

I = I1 + I2 + I3 + I4

109

Hertz and Stormo (Finding motif profiles and motifs)

Input: Set S of sequences with a likely common motif, L the motif length, and D the number of profiles to

retain at each step of the algorithm

Algorithm:

1. Create a singleton profile from one of the L-mers in one of the sequences.

2. Until each profile has k members where the size of S is k:

a. For each of the D profiles retained, add each possible L-mer from sequences not already

represented in the set of profiles

b. Compute the information content of each profile

c. Retain the D profiles with the highest information content

Example input:

Sequences S:

Seq1: ACTGA

Seq2: TAGCG

Seq3: CTTGC

L = 4

D = 1

Step 1:

Randomly choose ACTG as the singleton profile.

Profile:

 1 2 3 4

A 1 0 0 0

C 0 1 0 0

G 0 0 0 1

T 0 0 1 0

Step 2:

a and b. Add each possible 4-mer from sequences not represented in the profile

Profile with set {ACTG, TAGC}: //try adding substring TAGC from Seq2

 1 2 3 4

A .5 .5 0 0

C 0 .5 0 .5

G 0 0 .5 .5

T .5 0 .5 0

110

Info content: (the 0’s will make the log undefined, so we’ll assume these are positive values close to 0)

(We’ll assume a background distribution of 25% for each nucleotide.)

= 4

Profile with set {ACTG, AGCG}: // try adding substring AGCG from Seq2

 1 2 3 4

A 1 0 0 0

C 0 .5 .5 0

G 0 .5 0 1

T 0 0 .5 0

Info content: 6

Profile with set {ACTG, CTTG}: //try adding substring CTTG from Seq3

 1 2 3 4

A .5 0 0 0

C .5 .5 0 0

G 0 0 0 1

T 0 .5 1 0

Info content: 6

Profile with set {ACTG, TTGC}: //try adding substring TTGC from Seq3

 1 2 3 4

A .5 0 0 0

C 0 .5 0 .5

G 0 0 .5 .5

T .5 .5 .5 0

Info content: 4

Step c: Keep the top 1 profile (arbitrarily choose set {ACTG, AGCG})

Step 2:

 a and b: Add each possible 4-mer from sequences not represented in the profile

Profile with {ACTG, AGCG, CTTG}: //note: we add the first 4-mer from seq3

 1 2 3 4

A .67 0 0 0

C .33 .33 .33 0

G 0 .33 0 1

T 0 .33 .67 0

Info content: 4.57

111

Profile with {ACTG, AGCG, TTGC} //note: we add the second 4-mer from seq3

 1 2 3 4

A .67 0 0 0

C 0 .33 .33 .33

G 0 .33 .33 .67

T .33 .33 .33 0

Info content: 2.96

Done, since the profile includes 3 instances, one from each of the three sequences.

Thus, the algorithm found the best motif profile to be:

Profile with {ACTG, AGCG, CTTG}:

 1 2 3 4

A .67 0 0 0

C .33 .33 .33 0

G 0 .33 0 1

T 0 .33 .67 0

Info content: 4.57

Consensus sequence for this motif: ACTG or AGTG or ATTG

112

Markov Chains

Defn: Let S be a set of states (example: A, C, G, T). Let (X0, X1, …) be a sequence of random variables,

each with sample space S. A kth order Markov chain satisfies:

Pr(Xt = x | X0, X1, X2, …, Xt-1) = Pr(Xt = x | Xt-k, Xt-k+1, …, Xt-1) for any t and any x in S. (the last k steps matter)

0th order Markov chain: distribution of Xt is not dependent on previous state (just like frequencies in

motif profiles)

1st order Markov chain: distribution of Xt is dependent on just one previous state Xt-1

Etc…

Example:

Let’s look at dinucleotide frequencies. Then the probability transition matrix M for the Markov chain is

size 4 x 4 (4 states going to each of the other states).

Mr,s = Pr(Xt = s | Xt-1 = r)

 A C G T

A .40 .30 .10 .20

C .30 .25 .35 .10

G .10 .30 .20 .40

T .25 .25 .25 .25

row A, col A: means the probability that the next nucleotide is A given A

row A, col C: means the probability that the next nucleotide is C given A

etc…

So, if this is the Markov chain model M, then the probability of sequence s1s2s3…st being generated by

this model is:

Pr(s1s2s3…st) = Pr(s1)*Ms1, s2*Ms2,s3*Ms3,s4*…*Mst-1,st

What is the probability that “ACTCGGA” is generated by this model M? Assume the probability of the

first nucleotide is 25% for each of ACGT.

Pr(ACTCGGA) = .25 *.30 * .10 * .25 * .35 * .20 * .10

113

Course Notes:

114

115

CS423/BIO423 Review Sheet – Midterm Exam #1

Content: Exam 1 will cover topics below (or however far we get through the day before the exam).

Material will be drawn from labs 1 - 3, prelabs, lectures, and posted moodle resources.

Procedure: The exam will start promptly at the beginning of class. Please arrive to class on time. You

may use one sheet of 8/5” x 11” paper (both sides) during the exam. Other than your sheet of notes, the

exam is closed-book, closed-calculator, closed-computer, and closed-notes. All computations will be

simple enough for you to do by hand. Tammy will provide the RNA-> amino acid translation table for you

during the exam.

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed

below and there may be topics that we covered in class that are not explicitly listed. You may want to

review the lecture notes, found on Moodle and review your lab assignments.

• Cellular and Molecular Biology (including lab 2)
o Genomes
o Mutations
o DNA (bases: ACTG)
o RNA (bases: ACUG)
o Amino Acids (20 different ones) and Proteins
o Central Dogma

▪ Transcription (DNA -> RNA)

• If there are introns, these are spliced out before translation
▪ Translation (RNA -> proteins)

o Regulatory regions, transcription start/stop sites
o DNA replication; DNA polymerase
o Gene expression
o Eukaryotes (genes have introns/exons, DNA is double helix), ex: yeast
o Prokaryotes (genes are all exons, circular DNA loop), ex: E.coli
o Alternative splicing

• Algorithms
o Types: recursive, exhaustive, branch and bound, divide and conquer, greedy
o Example: Towers of Hanoi is recursive
o Example: Merge sort is divide and conquer and recursive
o Example: Linear search is exhaustive
o Example: Binary search is branch and bound and recursive

• Algorithm analysis
o Big O
o Determine running time of algorithms

▪ Examples: insertion sort (O(n2)), merge sort (O(n lg n))

• Python (lab 1)
o Variables, strings
o Printing
o Conditions (if, else, elif), loops (for, while), functions (def)

116

o Files (input/output)
o Random numbers
o Booleans and comparison, logical operators (or, and, not)
o Lists (like arrays)

• Motifs (lab 3)
o DNA polymerase might bind to a motif, transcription start/stop sites, promoter signals,

intron splice sites
o Finding instances of known sites:

▪ Use profiles (table indicating frequency of nucleotides at each position in motif)
▪ Calculate likelihood ratios (Prob that it is a motif / Prob that it is background

dist)
▪ Log likelihood ratios (Take log of likelihood, so entries can be added in table)

Subject to change: refer to moodle for any changes to exam guide

117

CS423/BIO423 Review Sheet – Midterm Exam #2

Content: Exam 1 will cover topics from lecture and labs since exam 1 (or however far we get through the

day before the exam). Material will be drawn from labs 4 - 6, prelabs, lectures, and posted moodle

resources.

Procedure: The exam will start promptly at the beginning of class. Please arrive to class on time. You

may use one sheet of 8/5” x 11” paper (both sides) and a regular calculator during the exam. Other than

your sheet of notes, the exam is closed-book, closed-computer, and closed-notes. All computations will

be simple enough for you to do with a stand-alone calculator. Tammy will provide the RNA-> amino acid

translation table for you during the exam if needed.

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed

below and there may be topics that we covered in class that are not explicitly listed. You may want to

review the lecture notes, review Moodle, and review your lab assignments.

• Mutations/Substitutions/Evolution (lab 4)
o Molecular clock
o Sequence similarity

▪ Hamming distance
▪ p distance
▪ Jukes Cantor correction estimate (includes non-observed mutations)

o PAM and BLOSUM matrices for amino acid substitution rates

• String alignment (lab 5)
o Determine how similar two sequences are given deletions, insertions, and substitutions
o Manhattan problem (example of dynamic programming)
o optimal global alignment (dynamic programming) – find best alignment for two entire

strings
o optimal local alignment (dynamic programming) – find best alignment among any

substring of each of two input strings
o longest common subsequence (dynamic programming) – find longest common

subsequence in two strings
o Affine gap penalty (dynamic programming with four tables)

▪ penalty for starting a gap, penalty for extending gap
o All these run in time O(mn) where m and n are the lengths of the two input strings

• BLAST (Basic Local Alignment Search Tool) (lab 6)
o For proteins: default word size is 3 amino acids
o E-values
o bit scores
o types: blastp (protein to protein), blastn (DNA to DNA)

• Multiple sequence alignment
o Aligning more than 2 sequences at once
o One algorithm is extension of dynamic programming, but it gets too slow with several

sequences

118

o Heuristics: build up multiple alignment by aligning two strings, getting its alignment and
then adding another string, etc

o Clustal omega (tool for multiple sequence alignment and generating trees)

Subject to change: refer to moodle for any changes to exam guide

119

CS423/BIO423 Review Sheet – Midterm Exam #3

Content: Exam 3 will cover topics from lecture and labs since exam 2. Material will be drawn from labs 7

- 10, lectures, moodle resources, and the textbook.

Procedure: The exam will start promptly at the beginning of class. Please arrive to class on time. You

may use one sheet of 8/5” x 11” paper (both sides) and a regular calculator during the exam. Other than

your sheet of notes, the exam is closed-book, closed-computer, and closed-notes. All computations will

be simple enough for you to do with a stand-alone calculator. Tammy will provide the RNA-> amino acid

translation table for you during the exam if needed.

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed

below and there may be topics that we covered in class that are not explicitly listed. You may want to

review the lecture notes, found on Moodle and review your lab assignments.

• Phylogenetic Trees (also known as Evolutionary Trees, Guide Trees, lab 7)
o Terminology

▪ Clade (node and all descendants)
▪ Rooted (tree has a root, shows ancestry)
▪ Unrooted (tree has no root, just shows kinship among organisms)
▪ Cladogram (tree is unscaled, branch lengths do not show distance)
▪ Phylogram (tree is scaled, branch lengths show distance)

o UPGMA – given distance matrix, creates rooted tree
▪ Use mean distance as distance between clusters
▪ Merge closest clusters at each step
▪ If matrix is a distance matrix (where lower numbers are better), then branch

lengths can be calculated as the distance between the clusters / 2 for the total
length of the branch to the leaves

o Neighbor Joining – given distance matrix, creates unrooted tree
▪ Start with star topology
▪ Minimizes intra-cluster distance and maximizes distance to other clusters
▪ Join leaves by creating internal node in tree

o Both UPGMA and Neighbor Joining are greedy algorithms and may not produce the
optimal tree in terms of minimizing tree branch lengths. But both are fast and run in
time O(N3).

o The number of possible trees for N organisms grows really fast, so finding optimal tree is
only realistic for N < 8.

o Maximum Parsimony – given sequences and their alignment, creates unrooted tree
▪ Generates all possible trees for all informative sites, actually uses the alignment

to construct tree (not just distance scores or alignment scores)
▪ Choose tree that has the fewest changes (best explains the differences among

the sequences) over all sites
▪ Note that this method uses the sequence info and not the distance info (as in

UPGMA and Neighbor Joining)

• Gene Expression

120

• DNA Microarrays (may not be included)
o Probes (complementary DNA) on array / Targets (mRNA) washed over array
o Uses:

▪ sick / healthy cells
▪ compare species
▪ disease detection
▪ cell life cycle
▪ related cell functional pathways

• RNA-seq (lab 8)
o Comparative gene expression
o Counts of expressed mRNA

• Clustering (lab 9)
o k-means – given microrarray data, produce k clusters

▪ randomly select initial cluster assignments, calculate cluster center and reassign
▪ may not converge to same set of clusters
▪ usually fast running time

o QT – given microarray data, produce clusters with diameter at most d
▪ consider maximum clusters for each item, choose largest cluster and remove

items from chosen cluster for next iteration
▪ always produces same answer
▪ greedy, so may not produce optimal clusters
▪ usually fast running time

o Hierarchical clustering – given microarray data, produce a tree
▪ Pre-process step includes taking microarray data and generating N x N distance

matrix
▪ Runs just like UPGMA and distance metric can be chosen (mean distance,

closest points between clusters, furthest points between clusters, etc)
▪ Greedy, so may not produce optimal tree
▪ Up to experimenter to determine where to slice branches of tree to produce

independent clusters
▪ O(N3)

o Cluster 3.0 and Java TreeView (tools for clustering and viewing clusters)

• Motifs (lab 10)
o Conserved short regions of DNA, generally thought to be involved in gene expression
o Expectation Maximization

▪ Given sequences, randomly sample sequences to create profile, then use profile
to find best instances (until no changes are made)

o Gibbs Motif Sampler (on-line tool for lab 10)
o Hertz-Stormo Algorithm

▪ Keep adding best l-mer from sequences not already represented in profile

• Markov chains
o Example: dinucleotide frequencies (frequency of nucleotide at position N depends on

nucleotide at position N-1)

Subject to change: refer to moodle for any changes to exam guide

