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HANDOUTS – Please bring this booklet to all class sessions 
 
 
 

For access to latest calendar and syllabus: see Moodle 
(learning.up.edu) 
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Lab Instructions 
 
1. Software: See Moodle for any software installations you need to make prior to the start of the lab. 
 
2. Prelabs: Prelabs are to be completed individually and are due at the start of the lab day(s) designated 
for the lab. Prelabs are designed to ensure you have the background knowledge of concepts from class, 
the textbook, and other resources. 
 
3. Lab work sessions: You are expected to attend the class sessions for lab days. You will work with 
other students during the lab days to complete lab checkpoints. In some cases, you will work in groups 
of three. The lab pairings will be posted during each lab session and may be adjusted due to absences.  
 
4. Lab communication: You are expected to work together on labs during class; do not divide and 
conquer the checkpoints. 
 
5. Questions: If you have a question during the lab, please ask Tammy. 
 
6. Checkpoints: When you have completed a checkpoint, ask Tammy to review your work. Save all your 
work to your P: drive since you will submit a complete lab report and associated files for each lab. 
 
7. Unfinished checkpoints: Submit any work for unfinished checkpoints to Moodle by the deadline. The 
expectation is that pairings will complete the work together. If it is challenging to get together to 
complete the lab together, be clear with your partner(s) if you will be completing the lab individually or 
as a pair. Be sure to indicate if unfinished checkpoints were done together or individually in your 
submitted work. Check Moodle for lab deadlines. 
 
8. Late days: You have two free late days to submit prelabs and/or labs late. You may submit two items 
up to 24 hours late or submit one item up to 48 hours late. For partnered labs, all members will be 
“charged” late days for late work. However, if one partner has remaining late days and one partner does 
not, you may use the maximum late days of both partners. 
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Course Design for Learning 
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Activity 1: What is Data Science and Your Data Science Profile? 
 
This course focuses on big data analytics. This could be an entire curriculum, so we will primarily focus 
on data exploration and data analysis techniques for modeling information, which is often referred to as 
data science. We will focus much more on the “data analytics” and “data science” rather than the “big” 
part of big data in this course. Below is one definition of data science by Drew Conway. 
 

 
Figure: Venn Diagram of Data Science (by Drew Conway, Credit, Creative Commons: 

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram) 
 
1. Which of these circles do you consider your strengths (expertise would be about the domain from 
which the data is collected, so let’s use the domain of economics for this exercise)? 
 
 
 
2. For one of the intersecting areas below, describe a project that could fall under that zone. 
 Machine Learning (do this one if your first name begins with A – H) 
 
 
 
 Traditional Research (do this one if your first name begins with I – P) 
 
 
 
 Danger Zone (do this one if your first name beings with R – Z) 
 
 

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
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There are many training pathways to a career in data science, but it is a field that requires the melding 
of many skills sets, such as computer science, mathematics, statistics, data visualization, machine 
learning, communication/presentation skills, and domain expertise. 
 
Data Science is not “new” – just a resurgence due to the availability and ease of collecting and storing 
data. Statisticians have been doing data science for 50 years. We now have the computing capability for 
storing and analyzing lots of data. 
 
Often, data scientists work within teams so the composition of the team utilizes these combined 
skillsets. See the next figure for how teams could form. 
 

 
Figure from Doing Data Science by Cathy O’Neil and Rachel Schutt 
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3. Draw your own bar chart about your skillsets below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Viz Machine Learning  Math Stats Computer Science Communication Domain Expertise 
          Economics 
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Activity 2: Get to know the Vs of Big Data 
 
Introduce yourself to other members of the group. After everyone has met, continue with the activity 
below. 
 
“Big” Data is sometimes characterized by the 5 “V”s: 
 

 
 
Look at the images on the next few pages or use google. Use them and any other searching that you 
want to do to summarize your understanding of the 5 Vs. Your group may be assigned one to start with 
and then research the others when you have completed a definition for your assigned “V”. 
 
Volume: 
 
 
 
 
Velocity: 
 
 
 
 
Variety: 
 
 
 
 
Veracity: 
 
 
 
 
Value:  
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Image courtesy of IBM 
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Images courtesy of Excelacom 
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Activity 3: You and Your Expertise 
 
 
1. What domains interest you other than computer science (examples: music, sports, games, chemistry, 
astronomy, economics, law, education, healthcare, etc.)? 
 
 
 
 
 
 
 
 
 
 
 
 
2. Of your outside interests, select one to three domains in which you think you have expertise (more 
than just a casual observer / reader of a topic). Write those here and on post-it notes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We will use this data in a class-wide introduction exercise to determine expertise areas for the data 
science project team formation. 
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CS 438: Topics to Review from EGR 361 or MTH 361 
 
Data presentation: 

• Histograms 

• Box plots 

• Time series plots 

• Scatterplots 
 
Descriptive statistics: 

• Mean 

• Median 

• 5-number Summary and Quartiles 

• Standard Deviation and Variance 
 
Experiments: 

• Population 

• Sample 

• Random sample 

• Discrete variables 

• Continuous variables 
 
Probability distributions: 

• Normal distribution 

• Binomial distribution 

• Poisson distribution 

• Exponential distribution 
 

Statistical inference: 

• Single sample vs two sample 

• Inference on mean, proportion, variance 

• Analysis of variance (inference on means from more than two populations) 

• Type I and Type II Errors 

• Sample size 

• Central Limit Theorem 
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Activity 4: Statistics Review 
 
We will play a game to review concepts from EGR 361 or MTH 361. Use this space to make notes about 
the concepts that appear in the game. 
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Activity 5: Data and People 
 
A. In your group, brainstorm some products/services that you use that only work because there is access 
to data. 
 
 Example: recommendation systems (Amazon thinks you would also like these books given your 
order/search history) 

•  

•  

•  

•  

•  

•  
 
 
B.  Choose one of the products listed above. Which did you choose? _________________ 
Answer these questions: 

1. How has the product changed your behavior? 
 
 
 
 
 

2. How has your behavior changed the product? 
 
 
 
 
 

3. What data does the product/service collect from you and others to make this work? 
 
 
 
 
 

4. What do you value in terms of this product/service? 
 
 
 
 
 

5. What does the provider/company value in terms of the data? 
 
 
 
 
You may want to think of data and modeling as a continuous feedback loop.  
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Activity 6: Project Team Composition 
 
Your project team is built around collective interest and expertise. In your data science project group, 
complete the following activities. 
 
Rachel Schutt and Cathy O’Neil describe a set of skills (a profile) for a data scientist. Here is an example 
profile, similar to one from a previous activity: 
 

 
Figure: Data science Profile from Doing Data Science by O’Neill and Schutt 

 
Copy your data science personal profile from the prior activity. Note that the Domain Expertise is now 
your project domain (write domain here): ___________________________ 
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With your group’s individual data science profiles, put them together to make a stacked team profile. 
You may want to use different colors for each person, similar to the figure 1-3 in Activity 1. 
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Activity 7: Data Science Life Cycle and Project Planning 
The book, Data Science & Big Data Analytics by EMC2 presents a model of the data science life cycle. For 
this activity, work with your data science project team. 
 

 
Figure: Data Analytics Life Cycle from Data Science & Big Data Analytics (page 29). 

 
First, let’s examine this life cycle versus traditional scientific hypothesis testing and experimental design. 
 
Classic: 

Problem and Background Research (with Questions/Hypothesis) 
Design Experiment 
Data 
Model 
Analysis 
Conclusions 

 
Data Science: 

Data 
Problem 
Exploratory Analysis (plots, graphs, descriptive stats) 
Model 
Conclusions, Operationalize 
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Some notes about the data analytics lifecycle: 

• It’s not a waterfall; each phase loops to previous and next steps and may need to do some 
smaller cycles (more like prototyping in software engineering) 

• The entire lifecycle is cyclical – no finality since the operationalize step often collects more data 
to discover 

 
(Team) In the table below, discuss questions, goals or items to consider at each phase of the course 
project. Make notes about things the team should consider about the project, questions that the team 
might explore, the type of dataset to use, and the type of dashboard information the resulting analysis 
might give. 

Phase Brief Description Team Notes, Questions, and Goals 

1. Discovery 
Proposal  
Due Feb 3 

Learn domain, history, and other 
projects; assess resources (time, 
people, tech, data); formulate initial 
questions about the data; set criteria 
for successful analysis outcomes; 
explore different sources of data or 
consider combining data sources 

 

2. Data Prep + 
Exploration 
Data exploration  
Due Feb 24 

Data exploration; is the data good 
enough; do I need to clean data or 
get more data? get data into form for 
processing; initial graphs/plots/stats 
from exploratory data analysis 

 

3. Model Planning 
 

Determine which data to use to 
create model; determine with 
model(s) are most useful; study 
relationships between variables 

 

4. Model Building 
Models + analysis 
Due Mar 31 

Executes data analysis; could be 
training/test data; build multiple 
models and compare; is hardware 
adequate? 

 

5. Communicate 
Results 
Dashboard 
Due Apr 28 

Communicate with major 
stakeholders, was analysis 
successful?, key findings, quantify 
business value, develop narrative to 
communicate with stakeholders; 
describe risks/bias in the data and 
models 

 

6. Operationalize 
Presentation 
Video 
Due May 3 
Demos May 4 

Deliver final reports, code, 
dashboards, insights, and new tools 
in a production environment 
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(Team) Establish how the team will work on the project together. You should be spending about 2 hours 
outside class each week on the project, and this time may be individual work time and/or team 
meetings. 
 
Weekly team meeting times: _______________________ 
 
 
How will the team store documents and communicate? ___________________________ 
 (MS Team group, Slack, OneDrive, etc.) 
 
 
Set up a github repository for the project (nominate someone to create it and add the group members). 
You can then post your final project dashboard live via a website on github. See 
https://pages.github.com/ for more information. 
 
 
 
 
(Team) Research existing dashboards and datasets for your project domain. Track what you find as 
helpful resources and datasets. 
  

https://pages.github.com/
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Activity 8: Asking Questions Practice 
 
You will now practice asking and generating questions given existing datasets.  
 

Domain 1: Baseball 
 

1. Go to https://www.baseball-reference.com/. 
2. Explore some of the data you see on this website. 

a. Batting 
b. Pitching 
c. Fielding 
d. Leaders & Awards 

3. Think about the “who, what, where, when, and why” questions when exploring the data. 
4. Generate a list of at least three questions below (note: you do not need to solve these – this is 

just practice for generating questions based on data) 
 

Example: What is the trajectory of a player’s performance as they age? 
Example: Does batting percentage correlate to field position? 
Example: How could we quantify the value of a trade between teams? 
Example: Do left-handers have longer careers than right-handers? 
Example: Are weights of players increasing in the population over time? 
 
 
Questions: 
 
 
1. 
 
 
 
 
2. 
 
 
 
 
3. 
 
 
 
 
4. 
 
 
 

 

 

https://www.baseball-reference.com/
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Domain 2: Movies 
 

1. Go to https://www.imdb.com/ 
2. Explore some of the data you see on this website. 

a. Actors 
b. Films 
c. Ratings 

3. Think about the “who, what, where, when, and why” questions when exploring the data. 
4. Generate a list of questions below (note: you do not need to solve these – this is just practice for 

generating questions based on data) 
 
Example: Can we predict how well people will like a movie? 
Example: Can we predict how much money a movie will gross in the theaters? 
Example: What is the age distribution of actors and actresses in film? 
 
 
 
Questions: 
 
 
1. 
 
 
 
 
2. 
 
 
 
 
3. 
 
 
 
 
4. 
 
 

  

https://www.imdb.com/
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CS 438: Models, Scatterplots, and Simple Regression 
 
Relationship between two variables: 
Suppose X = temperature and Y = money made selling lemonade 
We plot the temperature on the x-axis and $ on the y-axis. Suppose that plot looks like this. 
 

 
 

1. Does money relate to temperature? Why or why not? 
 
 
 
 
Suppose the plot looks like this.  
 

 
2. Does money relate to temperature? Why or why not? 
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Correlation 
What is correlation? The sample correlation coefficient, r, is defined as: 
 

𝑟 =  
∑[(𝑥− 𝑥̅)(𝑦−𝑦̅)]

√[∑(𝑥− 𝑥̅)2][∑(𝑦−𝑦̅)2]
  

 
Here, x and y are values for a single occurrence or observation. x bar is the average of the x values for 
the entire dataset. y bar is the average of y values for the entire dataset. The summation signs are over 
all data items in the dataset sample. 
 
For example, X could be height and Y could be blood pressure.  
 
Let’s consider r.  
 

When is r close to 1?  When y positively relates to x 
When is r close to 0?  When y does not relate to x at all 
When is r close to -1?  When y negatively relates to x 

 
 

3. Draw a scatterplot of data where r is close to 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Draw a scatterplot of data where r is close to -1. 
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5. Draw a scatterplot of data where r is close to 0.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Example correlation calculation: 
Blood pressure readings are collected from 6 people. The age and high number from the blood pressure 
are recorded. Is age correlated with blood pressure? 
 

Subject Age (x) Pressure (y) 

A 43 128 

B 48 120 

C 56 135 

D 61 143 

E 67 141 

F 70 152 
 

means 57.5 136.5 
 
1. Calculate (𝑥 − 𝑥̅) and  (𝑦 − 𝑦̅) for each sample: 
 

x - x_bar y - y_bar 

-14.5 -8.5 

-9.5 -16.5 

-1.5 -1.5 

3.5 6.5 

9.5 4.5 

12.5 15.5 
 
2. Calculate the squares of each of these and the sum for each column: 

 (x-x_bar)^2 (y-y_bar)^2 

 210.25 72.25 

 90.25 272.25 

 2.25 2.25 

 12.25 42.25 
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 90.25 20.25 

 156.25 240.25 

   

Sum 561.5 649.5 
 
3. Calculate (𝑥 − 𝑥̅) * (𝑦 − 𝑦̅) and the sum: 
 

(x-x_bar)(y-y_bar) 

123.25 

156.75 

2.25 

22.75 

42.75 

193.75 

 
541.5 

 

4. Sample correlation coefficient 𝑟 =  541.5 / √(561.5 ∗ 649.5) = 0.896673. 
 

 

NOTE: CORRELATION DOES NOT IMPLY CAUSATION. THIS IS ONE OF THE MOST 
MISUNDERSTOOD CONCEPTS OF DATA ANALYSIS. IT IS SIMPLY A MEASURE OF RELATIONSHIP. 
 

Scatterplots 
A graph of dots showing the (x,y) values of the data. It is a visual representation of how two variables 
are related. Here is the scatterplot of (age, pressure) from the data above: 
 

 
 
Draw a line that best “fits” these points in the graph above. 
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Compare your line with other students. 
 
 
How should we define “best” for the possible lines? Discuss with your classmates. 
 
 
Here is the same scatterplot with the regression line (trendline): 

 
 
 

Linear Regression 
Creating the trendline is called linear regression using one predictor variable (in this case, age) with a 
response variable (in this case, blood pressure). Why is this trendline useful? 
 
 
 
 
This gives us a model built from the data. These models can then be used for prediction. For example, 
suppose a new patient comes to the clinic and that patient is 50 years old. What would you predict for 
the new patient’s blood pressure? ______________ 
 
 
Simple linear regression builds a linear model: 
 Usually we say the independent variable is the regressor variable or predictor x 
 Usually we say the dependent variable is the response variable y 
 
 
How do we determine the equation for the line?  
 

𝑌 =  𝛽0 +  𝛽1𝑋 + 𝑒𝑟𝑟𝑜𝑟 
 
We want to minimize the error, so the predicted Y is as close to the observed y value as possible. How 
do we do this? 
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We minimize the sum of squares from the predicted Y (trendline estimate) and the observed y for all the 
data points. This is called least squares estimation. 
 
Fortunately, we have equations to estimate the beta values that do least squares estimation. 
 
The errors (observed_y – estimated_y) are called residuals. Residuals can be positive and negative. 
Positive residuals fall above the trendline. Negative residuals fall below the trendline. We try to 
minimize the sum of the squares of the residuals. We know that this minimum has to be 0 (if all points 
fall on the trendline). 
 
Use the graph to estimate the residuals for the patients: 
 

 
 
Patient A observed – predicted: __________________ // patients are ordered left to right in graph 
Patient B observed – predicted: __________________ 
Patient C observed – predicted: __________________ 
Patient D observed – predicted: __________________ 
Patient E observed – predicted: __________________ 
Patient F observed – predicted: __________________ 
 
 
Here are the equations to compute the beta values: 
 

𝛽0 =  𝑦̅ −  𝛽1𝑥̅ 
 

𝛽1 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥̅) (𝑥𝑖 − 𝑥̅) 𝑛
𝑖=1

 

 

Example Calculation from the Data Above 
Because 𝛽1 is used in 𝛽0, we calculate 𝛽1 first, which is the slope of the line. 

1. Calculate numerator. We did this above and the result is 541.5. 
2. Calculate the denominator. We did this above and the result is 561.5. 
3. 𝛽1 = 0.964381 
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4. Calculate mean of observed y and mean of observed x. We did this above. The mean of y is 
136.5. The mean of x is 57.5. 
5. 𝛽0 = 81.04809 

 

Using R 
In R, you can build a regression model using the command lm.  Here is the output of the same data: 
 
First, the code the build the data frame: 

age <- c(43, 48, 56, 61, 67, 70) 

pressure <- c(128, 120, 135, 143, 141, 152) 

mydata <- data.frame(age, pressure) 

mydata 

names(mydata) 

 
OK, the data looks good. Let’s see the scatterplot: 

plot(mydata$age, mydata$pressure) 

 
We can create the regression model using the lm command: 
      mod <- lm(pressure ~ age, data=mydata) 

summary(mod) 

 
What does this print? 

Call: 
lm(formula = pressure ~ age, data = mydata) 
 
Residuals: 
       1        2        3        4        5        6  
 5.48353 -7.33838 -0.05343  3.12467 -4.66162  3.44524  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  81.0481    13.8809   5.839  0.00429 ** 
data$age      0.9644     0.2381   4.051  0.01546 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 5.641 on 4 degrees of freedom 
Multiple R-squared:  0.804, Adjusted R-squared:  0.755  
F-statistic: 16.41 on 1 and 4 DF,  p-value: 0.01546 

 
Let’s see … did the regression produce the same values as our own calculation? 
 
 
 
Look at the residuals … did they match your estimates from above? 
 
 
 
Look at Multiple R-squared. It is 𝑟2 for linear regression with one predictor variable. Multiple R-squared 
is always between 0 and 1. Remember, r can be between -1 and 1 and indicates positive and negative 
relationships.  
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We can also use R to calculate the correlation coefficient: 

cor(mydata$age, mydata$pressure) 

 
This produces [1] 0.8966728, which is what we calculated earlier. 

 
If we multiple the correlation coefficient by itself, we get the value 0.8040221. 
 
We can also add the regression line to the plot: 

abline(mod) 

 

Using the Model for Prediction 
Suppose a new patient comes to the clinic who is aged 53. We can predict her blood pressure: 

predict(mod,data.frame(age=(c(45))), interval="confidence") 

 
This returns: 
       fit     lwr      upr 
1 124.4452 113.998 134.8925 

 
This gives us the 95% confidence interval for the predicted value, given that we are estimating the 
pressure mean correctly.  
 
We can also get the prediction interval for her blood pressure: 

predict(mod,data.frame(age=(c(45))), interval="prediction") 

 
This returns: 
       fit      lwr      upr 
1 124.4452 105.6184 143.2721 

 
Notice that we get the same fit value, but the interval is larger. The confidence interval assumes the 
data is randomly sampled from a normal distribution, so it is really estimating the mean parameter for 
blood pressure. A prediction interval tells you where you can expect to see the next point that is 
sampled (where a single value will fall versus where the sample mean will fall as in the confidence 
interval). Prediction intervals account for the uncertainty in knowing the true population mean plus the 
uncertainty in data scatter. 
 
Because this is a new patient who is 45 years old, we can predict that her blood pressure will be 
between 105.6 and 143.3. 
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Activity 9: Practice with Scatterplots and Linear Models in R 
 
Use R and experiment with the cars dataset. The cars dataset has speed versus stopping distance for 50 
different observations.  
 
Make a scatterplot of speed versus stopping distance. 
 
Build a linear model to predict stopping distance. 
 
 
What is the model?  
 Stopping distance = _________________________ 
 
 
 
Use the model to predict the stopping distance for speed of 50. 
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CS 438: Multiple Regression 

 
Think about a scenario where you want to predict the value of something given several factors. 
 
What are you predicting? _____________________ 
 
Give at least three factors/variables that could influence the value you are predicting? 
 
 1. 
 
 2. 
 
 3. 
 
 
 
For example, you want to predict the price of an electric bill given outdoor high temperature, number of 
people in a household, and square footage of the household. 
 
How would you build this model from data? 
 
If you want to build a linear model of multiple variables, you may use multiple regression. For example, 
you are a biologist and want to predict the number of spring babies in a herd of antelope based on the 
current population, how much precipitation happened over the winter, and the severity of the winter. 
 

Spring Fawn Count (/100) Antelope Pop (/100) Precipitation Winter severity 

2.900000095 9.199999809 13.19999981 2 

2.400000095 8.699999809 11.5 3 

2 7.199999809 10.80000019 4 

2.299999952 8.5 12.30000019 2 

3.200000048 9.6 12.60000038 3 

1.899999976 6.800000191 10.60000038 5 

3.400000095 9.699999809 14.10000038 1 

2.099999905 7.900000095 11.19999981 3 

 
You want to build a model: 
 

𝐹𝑎𝑤𝑛𝐶𝑜𝑢𝑛𝑡 =  𝛽0 +  𝛽1 ∗ 𝑝𝑜𝑝 +  𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 +  𝛽3 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 
 
Notice that the model is linear and we are trying to minimize the squared error of the fawn count 
predictions when estimating the values for the betas.  
 
Solving for the beta values involves a system of linear equations. 
 
Suppose there are k variables in the model that is used to predict the value for y. We can write the data 
in the form of a table. Note that the top row of the table is a header column, with one header per 
variable. 
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𝒚 𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝒌 

𝑦1 𝑥11 𝑥12 𝑥13  𝑥1𝑘 

𝑦2 𝑥21 𝑥22 𝑥23  𝑥2𝑘 

𝑦3 𝑥31 𝑥32 𝑥33  𝑥3𝑘 

…      

𝑦𝑛 𝑥𝑛1 𝑥𝑛2 𝑥𝑛3  𝑥𝑛𝑘 

 
Least squares equations: 
 

𝑛 ∗ 𝛽0 + 𝛽1 ∗  ∑ 𝑥𝑖1

𝑛

𝑖=1

+ 𝛽2 ∗  ∑ 𝑥𝑖2

𝑛

𝑖=1

+ ⋯ + 𝛽𝑘 ∗ ∑ 𝑥𝑖𝑘 =  ∑ 𝑦1

𝑛

𝑖=1

𝑛

𝑖=1

 

 
 

𝛽0 ∗  ∑ 𝑥𝑖1

𝑛

𝑖=1

+  𝛽1 ∗  ∑ 𝑥𝑖1 ∗ 𝑥𝑖1

𝑛

𝑖=1

+ 𝛽2 ∗ ∑ 𝑥𝑖1 ∗ 𝑥𝑖2

𝑛

𝑖=1

… +  𝛽𝑘 ∗ ∑ 𝑥𝑖1 ∗ 𝑥𝑖𝑘 =  ∑ 𝑥𝑖1𝑦1

𝑛

𝑖=1

𝑛

𝑖=1

 

 
 ….  …   …  …   … 
 

𝛽0 ∗ ∑ 𝑥𝑖𝑘

𝑛

𝑖=1

+  𝛽1 ∗  ∑ 𝑥𝑖𝑘 ∗ 𝑥𝑖1

𝑛

𝑖=1

+ 𝛽2 ∗ ∑ 𝑥𝑖𝑘 ∗ 𝑥𝑖2

𝑛

𝑖=1

… + 𝛽𝑘 ∗ ∑ 𝑥𝑖𝑘 ∗ 𝑥𝑖𝑘 =  ∑ 𝑥𝑖𝑘𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 
 
There are (k+1) equations and (k+1) regression coefficients, so it can be solved with linear algebra. R 
does this computation for us, but now you know how R is calculating the coefficients. 
 
Let’s do the fawn count prediction using these equations (see excel file). 
 
Now, let’s see what R gives us: 
count <- c(2.9, 2.4, 2, 2.3, 3.2, 1.9, 3.4, 2.1) 

pop <- c(9.2, 8.7, 7.2, 8.5, 9.6, 6.8, 9.7, 7.9) 

prec <- c(13.2, 11.5, 10.8, 12.3, 12.6, 10.6, 14.1, 11.2) 

winter <- c(2, 3, 4, 2, 3, 5, 1, 3) 

ant <- data.frame(count, pop, prec, winter) 

ant 

fit <- lm(ant$count ~ ant$pop + ant$prec + ant$winter) 

fit 

 
Call: 
lm(formula = ant$count ~ ant$pop + ant$prec + ant$winter) 
 
Coefficients: 
(Intercept)      ant$pop     ant$prec   ant$winter   
    -5.9220       0.3382       0.4015       0.2629   

 
OK, that’s good. We get the same coefficients as we found by hand. 
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What is the model? 
 

𝐹𝑎𝑤𝑛𝐶𝑜𝑢𝑛𝑡 =  −5.922 +  0.3382 ∗ 𝑝𝑜𝑝 + 0.4015 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 0.2629
∗ 𝑤𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 

 
So, we can use this equation to make predictions. Suppose the population is 8.26, the precipitation is 
13.5, and the winter severity is 2. How many spring fawns would you expect? ______________ 
 
Here’s what the graph of all pairs scatterplots looks like: 

 
Now, let’s see how good of a model this is by applying the summary function: 
Call: 
lm(formula = ant$count ~ ant$pop + ant$prec + ant$winter) 
 
Residuals: 
       1        2        3        4        5        6  
-0.11533 -0.02661  0.09882 -0.11723  0.02734 -0.04854  
       7        8  
 0.11715  0.06441  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -5.92201    1.25562  -4.716   0.0092 ** 
ant$pop      0.33822    0.09947   3.400   0.0273 *  
ant$prec     0.40150    0.10990   3.653   0.0217 *  
ant$winter   0.26295    0.08514   3.089   0.0366 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1209 on 4 degrees of freedom 
Multiple R-squared:  0.9743, Adjusted R-squared:  0.955  
F-statistic: 50.52 on 3 and 4 DF,  p-value: 0.001229 
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Interpretation 
The residuals are, like before, the difference of the observed minus the estimated values for each 
observation. The coefficients are the same as before, but now we see the t-values and p-values for how 
much each factor is significant to the model. There are 4 degrees of freedom (N – 1 - #factors). In this 
case, there are (8 – 1 – 3) = 4 degrees of freedom. 
 
The Multiple R-squared gives us an estimate of how much the variables account for the variance in the 
model. This is a high R-squared, so the variables together are predicting much of the fawn count. The F-
statistic tells us if the regression model is better than the intercept-only model (no variables, just the 
mean of the response variable). 
 
3D Scatterplots 
Here, we create a linear model and plot two predictor variables (x = pop, y = prec) and the response 
variable (z = count). 
 
install.packages("scatterplot3d") 

library("scatterplot3d") 

s3d <- scatterplot3d(ant$pop, ant$prec, ant$count, type="p", 

highlight.3d = TRUE, pch = 20) 

fit2 <- lm(count ~ pop + prec, data=ant) 

s3d$plane3d(fit2, draw_polygon = TRUE, draw_lines = TRUE) 

 
You can see the plane that is the predicted values based on the regression model. 

 
 
We can do multiple regression with two more predictor variables, but it is difficult to graph in 4D. 
Hopefully, this 3D version gives you a mental visualization of regression models. 
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CS 438: Variable Transformations and Polynomials for Regression 

 
So far, we have looked at models with one or more predictor variables that predict another variable. 
But, the data may not relate well as a linear combination. 
 
Consider the data below. (Speed is the speed of a car and dist is how far the car coasts before 
coming to a stop. This is fictitious data for the example.) 

 
 

1. Draw your best fit regression line for this data on the ploy above. 
 
 
2. Do the residuals get bigger as the speed increases? 
 
 
3. Would a linear model be a good choice for this dataset? Why or why not?  
 
 
 
 
 
4. What could we do to the data so that a linear model would be a better fit? 
 
 
 
 
 
 
Let’s look at the scatterplot if we take log10 of the distance and plot: 
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It’s looking like a better dataset for simple linear regression. We can create the linear model using the 
transformed distance variable: 
> mod_log <- lm(log10(dist) ~ speed, data=cars2) 
> summary(mod_log) 

 
Call: 
lm(formula = I(log10(dist)) ~ speed, data = cars2) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.91008 -0.27100 -0.02192  0.31374  1.32267  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.18379    0.25554   8.546 3.34e-11 *** 
speed        0.15734    0.01571  10.015 2.41e-13 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5815 on 48 degrees of freedom 
Multiple R-squared:  0.6763, Adjusted R-squared:  0.6696  
F-statistic: 100.3 on 1 and 48 DF,  p-value: 2.413e-13 

 
> abline(mod_log) 
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You can transform any and all variables before applying regression. That is why it is important to view 
the scatterplot of your data, especially if there are one or two predictor variables – that way you may 
look for patterns that would benefit from transformations. 
 
Since we create a linear model that involved log10 of our predictor variable, we would need to 

transform the predicted value back into the original units. 
 
For example, looking at the graph above: 
 
5. Suppose speed is 15. What is the predicted log10 of the distance given the trendline? ld = 

____________ 
 

6. Now, we would need apply 10ld = _________________ to get the predicted distance. 

 

  



39 
 

Polynomials in Regression – Corn Data 
Suppose rainfall and corn crop yield are measured for the past 35 years. The data is shown below. 

 
7. Draw a best fit trend line through the data (does not need to be linear, but should be a smooth 
curve). 
 
Maybe a higher-order polynomial would be better than a linear model. We can run a regression in R to 
fit the following function: 

𝑦𝑖𝑒𝑙𝑑 = 𝛽0 +  𝛽1 ∗ 𝑟𝑎𝑖𝑛 +  𝛽2 ∗ 𝑟𝑎𝑖𝑛2 
 
> mod_corn <- lm(corn$yield ~ poly(corn$rain, 2)) 
> summary(mod_corn) 

Call: 
lm(formula = corn$yield ~ poly(corn$rain, 2)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.8391 -1.9255 -0.5262  3.1692  6.1278  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          31.3194     0.6022  52.005  < 2e-16 *** 
poly(corn$rain, 2)1  11.1890     3.6134   3.096  0.00398 **  
poly(corn$rain, 2)2  -7.9110     3.6134  -2.189  0.03575 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.613 on 33 degrees of freedom 
Multiple R-squared:  0.3035, Adjusted R-squared:  0.2613  
F-statistic: 7.191 on 2 and 33 DF,  p-value: 0.002558 
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So, this creates a regression model of: 
 

𝑦𝑖𝑒𝑙𝑑 =  𝟑𝟏. 𝟑𝟏𝟗𝟒 +  𝟏𝟏. 𝟏𝟖𝟗 ∗ 𝑟𝑎𝑖𝑛 +  (−𝟕. 𝟗𝟏𝟏) ∗ 𝑟𝑎𝑖𝑛2 
 
 
We can plot this by creating the predicted curve of this model: 
> predicted_corn3 <- predict(mod_corn3, data.frame(x=corn$rain), interval="co
nfidence") 
> lines(corn$rain, predicted_corn[,1], col="red") 

 
Using this second-degree polynomial model, if the rainfall is 8 inches, what is the predicted crop yield? 
___________ 
 
What is the rainfall amount for the maximum yield in this model? ________________ 
 
 
8. How do we know if we should go to a third-order polynomial model? 
 
We can try to add another term to the model for 𝑟𝑎𝑖𝑛3: 
> mod_corn3 <- lm(corn$yield ~ poly(corn$rain, 3)) 

Call: 
lm(formula = corn$yield ~ poly(corn$rain, 3)) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-9.0216 -1.8982 -0.5671  3.0863  5.8962  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          31.3194     0.6106  51.290  < 2e-16 *** 
poly(corn$rain, 3)1  11.1890     3.6638   3.054  0.00452 **  
poly(corn$rain, 3)2  -7.9110     3.6638  -2.159  0.03843 *   
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poly(corn$rain, 3)3   1.1544     3.6638   0.315  0.75474     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.664 on 32 degrees of freedom 
Multiple R-squared:  0.3057, Adjusted R-squared:  0.2406  
F-statistic: 4.696 on 3 and 32 DF,  p-value: 0.00792 

 
We see that the third-order term is no longer significant (as an independent variable) in the model.  
 
What is the model? 𝑌𝑖𝑒𝑙𝑑 = ______________________________________ 
 
9. Let’s try to fit a third model -- simple linear regression line to our data: 
> mod_corn1 <- lm(corn$yield ~ corn$rain) 
> summary(mod_corn1) 

Call: 
lm(formula = corn$yield ~ corn$rain) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-9.7626 -2.2105 -0.0738  2.6972  6.0832  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  23.2325     2.8257   8.222 1.36e-09 *** 
corn$rain     0.7542     0.2568   2.937  0.00591 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.81 on 34 degrees of freedom 
Multiple R-squared:  0.2024, Adjusted R-squared:  0.1789  
F-statistic: 8.626 on 1 and 34 DF,  p-value: 0.00591 

 
OK, now we have three different models, each using a different order of polynomial, shown below. 
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11. Which is the best of the three? ___________________________  
 

What data did you use to make your decision? ___________________ 
 
We can run an analysis of variance to see if the models (what they predict) are significantly different: 
> anova(mod_corn1, mod_corn) 

Analysis of Variance Table 
 
Model 1: corn$yield ~ corn$rain 
Model 2: corn$yield ~ poly(corn$rain, 2) 
  Res.Df    RSS Df Sum of Sq      F  Pr(>F)   
1     34 493.46                               
2     33 430.88  1    62.584 4.7931 0.03575 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

> anova(mod_corn1, mod_corn3) 
Analysis of Variance Table 
 
Model 1: corn$yield ~ corn$rain 
Model 2: corn$yield ~ poly(corn$rain, 3) 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1     34 493.46                            
2     32 429.55  2    63.916 2.3808 0.1087 
 

> anova(mod_corn, mod_corn3) 
Analysis of Variance Table 
 
Model 1: corn$yield ~ poly(corn$rain, 2) 
Model 2: corn$yield ~ poly(corn$rain, 3) 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1     33 430.88                            
2     32 429.55  1    1.3326 0.0993 0.7547 

 
 
Does this agree with your assessment of the best model of the three? ___________ 
 

Measures: Multiple R-Squared and Adjusted R-Squared 
The Multiple R-squared gives us a measure of the percentage of the variability in the data for yield is 
explained by rain. 
 
When building models over several predictors, you should look at Adjusted R-squared. The Multiple R-
squared value will go up as you add predictors to a model, even due to chance alone. A model with 
more terms will give us better Multiple R-squared values, so it can mislead you into concluding that a 
model with more predictors is always better. Plus, more predictors can lead to over-fitting the data 
(higher order polynomials that connect the dots in the training data really well, but would do a poor job 
predicting new data). Instead, look at the Adjusted R-squared. This accounts for the number of 
predictors in your model, so you can compare two or more models with different number of predictors. 
 
Look at the models to see the Adjusted and Multiple R-squared values 
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Model Adjusted R-Squared Multiple R-Squared 

Linear  .1789 .2024 

Degree 2 Poly .2613 .3035 

Degree 3 Poly .2413 .3057 

 
Which has the lowest Adjusted R-squared value? ___________________ 
 
How are these calculated? 
 
First, we saw the calculation for 𝑟 (correlation coefficient) in an earlier lecture. Regular 𝑟2 is the square 
of r. 
 
What about Multiple R-squared? Now, we use the model to create predicted response levels and use 
the actual observed levels to estimate how much of the variability is estimated by the linear model: 
 

𝑅̂2 = 1 −  
∑ (𝑌𝑖 −  𝑌̂𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖 −  𝑌̅)2𝑛
𝑖=1

 

 
Here, the Y with the hat is the predicted value from the model and Y with the bar is the sample mean of 
the observed response values. The top of the fraction is the sum of the residuals squared. The bottom of 
the fraction is the sum of the residuals for a model that is a straight horizontal line for the mean of Y. 
 

When is 𝑅̂2 close to 1? ___________________________ 
 
You can see that the Multiple R-squared calculation does not take into considering of how many 
predictors are in the model. 
 
The Adjusted R-squared metric takes into account the number of parameters (beta values) in the 
regression (below, this is p). 
 

𝑅̂𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 =  𝑅̂2 − (1 − 𝑅̂2)

𝑝

(𝑛 − 𝑝 − 1)
 

 

You can see that the fractional part is between 0 and 1 and (1 − 𝑅̂2) is between 0 and 1, so the 

Adjusted R-squared value is less than the Multiple R-squared value.   
 
You can now create many different models using regression. Remember: 

• You can transform variables (using log, sqrt, etc.) to create better linear models. 

• You can create higher-order terms from variables to create non-linear (curved) models. 

• Creating models is like an art – there are several options regarding transformation of variables 
and polynomials 

• The examples from this handout use just one predictor variable, but a model may have multiple 
predictor variables along with multiple orders of polynomials for those variables. 
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CS 438: Regression Math Summary 

 
Now that we have been applying linear regression, this is a summary of some of the terms associated 
with regression. 
 
(Review) What is a residual? For a particular observed value, it is the difference of the observed value 
𝑦𝑖  and the predicted value 𝑦̂𝑖  based on the model. 
 

Residual: 𝑦𝑖 −  𝑦̂𝑖  
 
The residual sum of squares (error sum of squares) is defined as: 
 

𝑆𝐸𝐸 =  ∑ (𝑦𝑖

𝑛

𝑖=1
 −  𝑦̂𝑖)2 

 
 Take each residual, square it, and get the sum. 
 
The regression sum of squares (error sum of squares) is defined as: 
 

𝑆𝐸𝑅 =  ∑ (𝑦̂𝑖

𝑛

𝑖=1
 −  𝑦̅)2 

 
 Take each y value predicted by the model and subtract the mean of the observed values, square 
them, and sum them. NOTE that this is different than the residual sum of squares, the term we minimize 
to create the model. 
 
In R: 
library(MASS) 

plot(Boston$rm, Boston$medv) 

fit <- lm(medv ~ rm, data=Boston) 

fit 

abline(fit, col="red") 

summary(fit) 

anova(fit) %will report the SSE 

residuals(fit) 

sqEr <- residuals(fit)*residuals(fit) 

sqEr 

sum(sqEr) 

# regression sum of squares 

pred <- predict(fit, rm=Boston$rm) 

regress <- pred - mean(Boston$medv) 

sqErR <- regress*regress 

sum(sqErR) 

 
From the anova function (22062 is the residual sum of squares, 20654 is the regression sum of squares) 
Analysis of Variance Table 
 
Response: medv 
           Df Sum Sq Mean Sq F value    Pr(>F)     
rm          1  20654 20654.4  471.85 < 2.2e-16 *** 
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Residuals 504  22062    43.8                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
 
Also, the residuals function will give you the residuals and the residual sum of squares can be computed 
directly. From R, the sum(sqEr) is 22061.88 and sum(sqErR) is 20654.42. 
 

Simple Linear Regression 
Simple Linear Regression: estimates of variance of the model, variance of 𝜷𝟎, and variance of 𝜷𝟏  
For simple linear regression (one predictor variable), the variance of model is the SSE divided by the 
degrees of freedom (n-2), where n is the number of observations in the sample used to create the 
model: 

𝜎̂2 =  
𝑆𝑆𝐸

𝑛 − 2
 

 

𝑉(𝛽0) =  𝜎̂2(
1

𝑛
+  

𝑥̅2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

) 

 

𝑉(𝛽1) =  
𝜎̂2

∑ (𝑥𝑖 −  𝑥̅)2𝑛
𝑖=1

 

 
Therefore, the standard error of each value are the square roots of the variances. Normality is centered 
at the 𝛽 coefficients with the standard deviations as calculated above. 
 
 
Confidence intervals for 𝜷𝟎, and  𝜷𝟏 
 
100(1-𝛼)% Confidence interval for 𝜷𝟎: 
 

(𝛽0 − 𝑡𝛼
2

,𝑛−2
∗ √𝑉(𝛽0), 𝛽0 + 𝑡𝛼

2
,𝑛−2

∗  √𝑉(𝛽0)) 

 
Where the t value is from the t-distribution. 
 
100(1-𝛼)% Confidence interval for 𝜷𝟏: 

(𝛽1 − 𝑡𝛼
2

,𝑛−2
∗ √𝑉(𝛽1), 𝛽1 +  𝑡𝛼

2
,𝑛−2

∗  √𝑉(𝛽1)) 

 
In R: 
# variance of model 

denom <- length(Boston$rm) - 2 

var_fit <- sum(sqEr)/denom 

var_fit 

 

# variance of beta_0 

rm_mean <- mean(Boston$rm) 

diff_x_mean <- Boston$rm - rm_mean 

diff_x_mean 
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diff_sq <- diff_x_mean * diff_x_mean 

diff_sq 

var_beta0 <- var_fit*(1/length(Boston$rm) + 

(rm_mean*rm_mean)/sum(diff_sq)) 

var_beta0 

 

# variance of beta_1 

var_beta1 <- var_fit / sum(diff_sq) 

var_beta1 

 

# confidence interval of beta_0 

t_val <- 1.97 

lb_beta0 <- -34.671 - t_val*sqrt(var_beta0) 

lb_beta0 

up_beta0 <- -34.671 + t_val*sqrt(var_beta0) 

up_beta0 

 

# confidence interval of beta_1 

lb_beta1 <- 9.102 - t_val*sqrt(var_beta1) 

lb_beta1 

ub_beta1 <- 9.102 + t_val*sqrt(var_beta1) 

ub_beta1 

 

# with R's confidence interval 

confint(fit) 

 
Printout: 
> confint(fit) 
                 2.5 %     97.5 % 
(Intercept) -39.876641 -29.464601 
rm            8.278855   9.925363 

 
> lb_beta1 
[1] 8.276518 

 
> ub_beta1 
[1] 9.927482 

 
R has a more precise t-table value for the t-distribution, so the values are slightly different from the 
built-in R command for confidence interval and the direct calculations. 
 
Visual interpretation of confidence interval for beta_0: 
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Models with the 95% confidence intervals for beta_1: 

 
Confidence interval for the response variable given a predictor x; this is when using the confidence 
option in R for the predict function 
 
100(1-𝛼)% Confidence interval for response 𝐸(𝑦0) for given 𝑥0 given the linear model of: 
 

𝑦̂0 =  𝛽0 +  𝛽1 ∗ 𝑥0 
 
is based on the variance of 𝑦̂0: 
 

𝑉(𝑦̂0) =  𝜎̂2  [
1

𝑛
+  

(𝑥0 −  𝑥̅)2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

]  

 
Then the confidence interval for the response given input x0 is: 
 

(𝑦̂0 −  𝑡𝛼
2

,𝑛−2
∗  √𝑉(𝑦̂0) ,   𝑦̂0 +  𝑡𝛼

2
,𝑛−2

∗ √𝑉(𝑦̂0)) 
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Prediction interval for the response variable (future observation); this is the prediction option in R for 
the predict function 
 
The variance for the prediction (new observation x0) is: 
 

𝑉(𝑝𝑖𝑦0) =  𝜎̂2  [1 +  
1

𝑛
+  

(𝑥0 −  𝑥̅)2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

] 

 
The 100(1-𝛼)% Confidence interval for the predicted new observation is: 
 

(𝑦̂0 − 𝑡𝛼
2

,𝑛−2
∗ √𝑉(𝑝𝑖𝑦0),    𝑦̂0 + 𝑡𝛼

2
,𝑛−2

∗ √𝑉(𝑝𝑖𝑦0)) 

 
You will see that the variance of the predicted mean is smaller than the variance for the predicted new 
observation, given the extra 1 added to the summation in the brackets. 
 
In R: 
> new_data <- data.frame(rm = c(5.5)) 
> predict(fit, new_data, interval="confidence") 
       fit      lwr      upr 
1 15.39098 14.52427 16.25768 
> predict(fit, new_data, interval="prediction") 
       fit      lwr      upr 
1 15.39098 2.363466 28.41849 

 
 

Multiple Regression 
The variance of the model: 
 

𝜎̂2 =  
𝑆𝑆𝐸

𝑛 − 𝑝
 

Note the only chance from simple linear regression is the denominator that includes p, which is the 
number of parameters (number of betas in the model). 
 
The confidence intervals for the parameters (betas), predicted mean, and the new observation 
predication interval are calculated in R. It gets more cumbersome with the equations, but they are linear 
combinations of the ones used in simple regression above.  
 

R, R-squared, Multiple R-Squared, Adjusted R-Squared 
These values are important when assessing relationships among variables. Remember, R can be 
between -1 and 1 where negative R indicates an indirect relationship and a positive R indicates a direct 
relationship. The closer |R| is to 1, the stronger the relationship. 
 
R squared is what the name says. 
 
Multiple R-Squared and Adjusted R-Squared were defined in previous lecture notes. 
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CS 438: Classification Introduction, Logistic Regression 

 
Earlier, we looked at linear regression to build prediction models. The response variable in this case is 
continuous (can take on any numeric value). But, what about the case where the response is binary 
(true or false, positive or negative, will purchase or will not purchase). In this case, the response is a 
classification into one of two categories. 
 
Where do you see classification problems used? (For example, spam filters classify incoming email as 
spam or not spam.) 
 
 
 
 
 
 
Class Activity: think of the room as 2-dimensional space. Each one of you is a data point (some x1 and 
some x2 value. Position yourself somewhere in the room. Your location indicates your x1 and x2 
position. 
 
Each one of you is also a category (raise hand up for YES, hand down for NO). What kind of category do 
you want to use? 
 
 
Look around you. Do you see any patterns? 
 
 
Can you visualize a line that separates the data into the two classes? Is it possible to separate the classes 
perfectly? 
 
 
Now, move around the room such that you could draw a line or curve to separate the people into two 
classes. 
 
 
Activity 1: Consider the data below. Each observation is a patient. The red circles are those with ALL 
leukemia and the blue x’s are those with AML leukemia. The x and y dimensions show scaled gene 
expression levels for two genes thought to be linked to leukemia.  
 

a. Suppose a new patient A has X level of 0.2 and Y level of 0.4. Given the existing data, how would 
you classify the new patient A? ALL or AML? 

 
 
 

b. Suppose a new patient B has X level of 0.8 and Y level of 0.3. How would you classify the new 
patient? ALL or AML? 
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c. Suppose a new patient C has X level of .05 and Y level of 0.5. How would you classify the new 

patient? ALL or AML? 
 
 

d. How confident are you with each of the three predicted classes? 
 
 

e. How did you determine which class to choose for the patients? 
 
 
 

 
 
Activity 2: Suppose you get one line to separate the data into two classes. Draw the line. Does it 
separate the patients perfectly? 
 
 
 
Activity 3: Now suppose you get to draw a curve to separate the data into two classes. Draw the curve. 
Does it separate the patients perfectly? 
 
 
 
In the plot above, there are two variables to predict a class. How is this similar to linear regression? 
 
You can see that we can have more than two variables that can predict a class – it’s just much more 
difficult to draw graphically in three or more dimensions. 
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Let’s review linear regression for predicting a numerical value for antelope fawn count: 
 

𝐹𝑎𝑤𝑛𝐶𝑜𝑢𝑛𝑡 =  𝛽0 +  𝛽1 ∗ 𝑝𝑜𝑝 +  𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 +  𝛽3 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 
 
Here, we found estimates for each of the betas to minimize the sum of squared error. FawnCount is a 
numerical response. In classification, the response needs to be a category or class, so we will need to 
somehow convert the response value to a category. 
 

Logistic Regression: Classifying into one of two classes 
We can perform a similar regression and output a probability of an item belonging to a class instead of a 
numerical response variable. For this to happen, the response needs to be a value between 0 and 1. 
Recall that probabilities must be between 0 and 1. 
 
We can think of this as a two-step prediction process: 

1. Get a response value Y based on the model 
2. Convert the response value Y to a probability between 0 and 1 

 
First, we need a function that can map any value from -infinity to infinity to [0, 1]. Draw a function below 
that does this. 
 
1 
 
 
 
 
 
 
 
0 
 -infinity        infinity 
 
 
Consider the following function: 
 

𝑃(𝑦) =  
1

1 + 𝑒−𝑦 
=  

𝑒𝑦

𝑒𝑦 + 1
 

 
Graph this function. Recall that e is the natural number. 
 

When y is close to negative infinity, what is the value of P(y)? ______________ 
 
When y is 0, what is the value of P(y)? ______________ 
 
When y is close to infinity, what is the value of P(y)? _________________ 

This is the function we will use to transform y to a probability. 
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Figure of P(y): From Logistic Regression Tutorial by Jason Brownlee 

 
Now, if we set the threshold for classes at 0.5, any returned probability that is greater than 0.5 is 
classified in the default class D. Otherwise, it is classified into the other class (ND = not default). 
 
We can transform this equation through some algebra: 
 

𝑃(𝑦) =  
1

1 + 𝑒−𝑦 
=  

𝑒𝑦

𝑒𝑦 + 1
 

 
(𝑒𝑦 + 1)𝑃(𝑦) =  𝑒𝑦 

 
𝑒𝑦𝑃(𝑦) + 𝑃(𝑦) =  𝑒𝑦 

 

𝑃(𝑦) +
𝑃(𝑦)

𝑒𝑦
= 1 

 
𝑃(𝑦)

𝑒𝑦
= 1 − 𝑃(𝑦) 

 
𝑃(𝑦) = 𝑒𝑦(1 − 𝑃(𝑦)) 

 
𝑃(𝑦)

1 − 𝑃(𝑦)
=  𝑒𝑦 

 
This form of 𝑃(𝑦) / (1 –  𝑃(𝑦)) is called the odds ratio. Think of the probability of flipping heads with a 
fair coin. The probability of getting heads is 0.5 and the probability of getting tails is 1 – 0.5 = 0.5, so the 
odds ratio for getting heads is 1. 
 
If the probability of winning a basketball game is 0.2, then the odds ratio for winning is 0.2/0.8 = 0.25. 
 

When is the odds ratio large? ________________________________________ 
 
When is the odds ratio small? ________________________________________ 
 
What is the minimum odds ratio? __________ 
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What is the maximum odds ratio? __________ 

 
So, now we can take the log of the odds ratio to get the relationship (log odds ratio): 
 

log (
𝑃(𝑦)

1 − 𝑃(𝑦)
) = 𝑦 

 
Now, we just need a way to model the estimate for 𝑦. We can do this using linear parameter estimation 
and we will change the variable 𝑦 to be 𝑥 as a vector (to represent observation 𝑥). 
 

log (
𝑃(𝑥 = 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠)

1 − 𝑃(𝑥 = 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠)
) =  𝛽0 +  𝛽1 ∗ 𝑥1 +  𝛽2 ∗ 𝑥2 + ⋯ 𝛽𝑘 ∗ 𝑥𝑘  

 
So, now we think of the coefficients and variables linearly combining to result in the log odds ratio. Or 
we think about the coefficients and variables being multiplicative toward the odds ratio, as we see in the 
equation below. 
 

The logit of p where p is a probability is 𝐥𝐨𝐠 (
𝒑

𝟏−𝒑
) 

 
Think about raising 𝑒 to both sides of this equation. This gives us: 
 

𝑃(𝑥)

1 − 𝑃(𝑥)
=  𝑒𝛽0+ 𝛽1∗𝑥1+ 𝛽2∗𝑥2+⋯ 𝛽𝑘∗𝑥𝑘 =  ∏ 𝑒𝑏𝑗𝑥𝑗

𝑘

𝑗=0

 

 
 
Suppose one of the coefficients for beta is 0.693. Then 𝑒0.693 equals ~2. Suppose 𝑥 is the variable for 
this coefficient. Then every unit increase in x doubles the odds ratio. 
 
Example: 
Suppose data is used to create a logistic regression classifier for the two classes: Passes_Exam and 
Fails_Exam. Data from students in the form of hours spent studying for the exam is collected, along with 
if they passed the exam. For example, student A spent 0.5 hours studying and failed the exam. Student B 
spent 1.75 hours studying and passed the exam. 
 
A logistic regression is performed and the following coefficients are found: 
 
 Intercept = -4.0777 
 Hours = 1.5046 
 
Log-odds of passing exam is: 
 

𝐿𝑜𝑔 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 =  −4.0777 + 1.5046 ∗ 𝐻𝑜𝑢𝑟𝑠 
 
Odds of passing exam: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑒𝑥𝑎𝑚 (𝑙𝑜𝑔𝑖𝑡) =  𝑒(−4.0777+1.5046∗𝐻𝑜𝑢𝑟𝑠) 
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Probability of passing exam from one of the first equations above: 
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑒𝑥𝑎𝑚 =   
1

(1 + 𝑒−(−4.0777+1.5046∗𝐻𝑜𝑢𝑟𝑠)) 
 

 
Hopefully, this helps you understand the various forms of these equations. 
 
Practice: 
Suppose a student studies 2 hours. What is her probability of passing the exam? _________ 
What is the log-odds of passing with 2 hours of studying? ________ 
What is the odds of passing with 2 hours of studying? _______ 
 
 
Suppose a student studies 4 hours. What is her probability of passing the exam? _________ 
What is the log-odds of passing with 4 hours of studying? ________ 
What is the odds of passing with 4 hours of studying? _______ 
 
 
What is the number of hours of studying that is the threshold for passing versus failing? ____ 
(Hint: set odds to 1 or set log odds to 0 or set the probability to 0.5) 
 
 
Calculating the coefficients 
Finding the coefficients in logistic regression uses a process called maximizing likelihood. Below, you can 
see that we cannot use linear regression and do least squared error (that would give us the red line). We 
need coefficients to model the blue line since we are modeling the log odds. One can use maximum 
likelihood to estimate the coefficients. One optimization strategy is to use stochastic gradient descent to 
get estimates for the coefficients. 
 
Here is the general strategy: 

• Calculate predictions for observations using current coefficient estimates 

• Calculate coefficients based on errors in the prediction 
 
So, it is a back-and-forth process until the error drops to some target level or the process can run for a 
set number of iterations. There is a parameter, alpha, the determines the learning rate. It controls how 
much the coefficients can change during each run. You will do this in lab. 
 
An example that uses stochastic gradient descent can be found here:  
https://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/ 
  
 

https://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/
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In R 
R calculates a logistic model with the glm function. You will get a chance to create these in lab. 
 
Example for Smarket data to predict Direction given six predictor variables: 
glm.fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, 

data = Smarket, family = binomial) 

 

summary(glm.fit) 

 

##  

## Call: 

## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +  

##     Volume, family = binomial, data = Smarket) 

##  

## Deviance Residuals:  

##    Min      1Q  Median      3Q     Max   

## -1.446  -1.203   1.065   1.145   1.326   

##  

## Coefficients: 

##              Estimate Std. Error z value Pr(>|z|) 

## (Intercept) -0.126000   0.240736  -0.523    0.601 

## Lag1        -0.073074   0.050167  -1.457    0.145 

## Lag2        -0.042301   0.050086  -0.845    0.398 

## Lag3         0.011085   0.049939   0.222    0.824 

## Lag4         0.009359   0.049974   0.187    0.851 

## Lag5         0.010313   0.049511   0.208    0.835 

## Volume       0.135441   0.158360   0.855    0.392 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  
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##     Null deviance: 1731.2  on 1249  degrees of freedom 

## Residual deviance: 1727.6  on 1243  degrees of freedom 

 
What is the log-odds of the stock market going up given this output? 
 

𝐿𝑜𝑔 − 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑈𝑝 =  −0.126 –  0.073 ∗ 𝑙𝑎𝑔1 –  0.042 ∗ 𝑙𝑎𝑔2 +  0.011 ∗ 𝑙𝑎𝑔3 +  0.009 ∗ 𝑙𝑎𝑔4 +  0.010 ∗ 𝑙𝑎𝑔5 +  0.135 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒 

 
Deviance residuals are a bit like residuals we saw in linear regression, but instead of observed versus 
predicted, we have a measure of deviance from the classification based on the probability that is 
predicted. 
 
Deviance of an observation i has two forms, depending on which class the observation is labeled: 
 

𝑑𝑖 =  √−2 ln(𝑃𝑖)  𝑤ℎ𝑒𝑟𝑒 𝑃𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡  

𝑑𝑖 =  −√−2 ln(1 − 𝑃𝑖)  𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

 
Binary logistic regression seeks to minimize the sum of squared deviance residuals. 
 
Graphical Interpretation of Logistic Regression 
Let’s return to the cancer classification: 
 

 
 

Draw that line to separate the two classes again. This line would be where the probability of the patient 
having ALL is 0.5. Take the point at x=.18, y=.65. This is far from that line, so the probability returned for 
this model would be closer to 1. Take the point at x=1, y=.32. This is far from the that line, so the 
probability returned for this model would be closer to 0. 
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CS 438: Classification: K Nearest Neighbors and Model Evaluation 

 
Earlier, we looked at logistic regression to classify items into one class. There are techniques to do 
multinomial linear regression to build prediction models to classify items into more than one class. If 
there are C classes, then you create C models (one for each class) and the one that gives the highest 
probability in logistic regression is chosen as the predicted class. 
 
Another approach is the do classification by finding the nearest set of K neighbors and having them take 
a vote, with the highest vote total winning. Of course, there can be ties if K = 3 and C = 3, there could be 
one vote for each class. In the case of ties, there are a couple of ways to handle them: flip a coin on a tie 
vote to break the tie OR choose the class of the closest neighbor. 
 
Class Activity: Get up and go to a location in the room (height x distance_to_campus). Classify yourself 
as on-campus or off-campus. Now let’s add a new data point. Use K = 7 to classify the new data point. 
 

Add another point. Use K = 1. 
 
Try another point. Use K = 5. 

 
 
KNN probability: 
Voting via math looks like this: 
 

Pr(𝑌 = 𝑗 |  𝑋 =  𝑥0) =  
1

𝑘
 ∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠_𝑘

 

 
Here, 𝑘 is the number of closest neighbors under consideration.  
 
Once the probabilities are calculated (these are just fractions of each class), the class with the highest 
probability is chosen. With a tie, flip a coin or choose the closest point. 
 
Distance: 
There must be a notion of distance for “nearest” neighbor. A common distance metric is Euclidean 
distance. 
 

𝐷(𝑥1, 𝑥2) =  √∑(𝑥𝑖1 −  𝑥𝑖2)
2

 

 
 
This is the “tape measure” distance between the two points. 
 
What are other way we might measure distance between two points? 
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Cosine similarity: think of data as vectors, two vectors that are aligned have a cosine value of 1, two 
vectors going in the opposite direction have a cosine value of -1 
 
Manhatten distance: think NYC, how many blocks you have to walk to get from one intersection to 
another (up/down and left/right) movements. 
 

𝐷(𝑥1, 𝑥2) =  ∑|𝑥𝑖1 − 𝑥𝑖2| 

 
Hamming distance: how many of the same position with the vector are equal, works for data such as 
strings like “Tammy” and “Sammy”, which have a hamming distance of 1. 
 
 
Normalized distance: Take data and for each component, convert values to standard normal (mean 0 
and standard deviation 1).  Then, use Euclidean distance. 
 
Why would normalized distance be preferred over regular Euclidean distance? 
 
_____________________________________________________________________ 
 
Activity 1: Classifying with KNN 
Suppose this is your dataset: 

 
1. Suppose a new data observation is (2, 2). 

K = 1. Euclidean Distance. 
 

Is it a square or a circle? _______________ 
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2. Suppose a new data observation is (1.75, 1). 
K = 1. Euclidean Distance. 

 
Is it a square or a circle? _______________ 

 
3. Suppose a new data observation is (1.5, 2). 

K = 3. Euclidean Distance. 
 

Is it a square or a circle? _______________ 
 

4. In the above figure, draw the boundary curve for classifying squares and circles based on KNN 
with K = 1. 

 
Activity 2: Creating the KNN boundaries 
Suppose you are using the dataset below.  Age is the age of a person and income is their annual income. 
Green colored in dots are people that do not default on a loan. Unfilled circles represent people who 
defaulted on the loan.  
 
Use K = 1 to build the boundary for classification and use Euclidean distance. Lightly shade the area of 
the plot for which new observations would be classified as filled in circles. 
 

 
 
Use k = 3 for KNN and Euclidean distance. Build the classifier boundaries. Lightly shade the area of the 
plot for which new observations would be classified as filled in circles. 
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Discussion: 

1. Which takes longer to compute on a new observation? KNN or logistic regression? 
 
 

2. Which would do better if the classes cluster in islands? KNN or logistic regression? 
 
 

3. Does K = 1 or K = 3 have less training error (mistakes in predicted classes)? 
 
 

4. Does KNN use more or less computer memory than logistic regression? 
 
 

5. What do the boundaries look like for KNN versus logistic regression? 
 
 

6. How would you decide which value of K makes the best classifier for a dataset? 

Evaluation 
There are many more classification methods than KNN and logistic regression, but now you have already 
seen there are many ways to create classifiers, even with just two models: which features from the 
dataset to keep in the model? (which ones in logistic regression are significant), which K to use in KNN? 
Which distance metric to use in KNN?  
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Cross-validation is a common technique to evaluate models. As in lab, you create two subsets of your 
original dataset: 
 
Training set: data observations used to construct the model 
Validation set: data observations used to test the model by using the model to make predictions and 
seeing if the predicted class is the observed class 
 

 
Figure 5.1 from STS; figures below also from STS 

 
Blue is the training set. Orange is the validation set. The model is trained on the blue observations. The 
model is validated on the orange observations. 
 
80/20 is a good starting place (80% training, 20% validation) 
 
But, what if we used the orange set to train and the blue set to validate? We may (likely) get a different 
model. 
 
What about overfitting? The model may get great training error and terrible validation error. 
 

Leave One Out Cross-Validation (LOOCV) 
We could instead make multiple models, leaving a different subset of the data as the validation set. 
 

 
 

In LOOCV, there are n models created and the test error is the average of the test error across all n 
models. 
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k-Fold Cross-Validation (LOOCV) 
We can create 10-fold cross-validation, in which the dataset is divided into 10 equal parts. 9/10 of the 
data is used to train each model. Brings down the number of models that must be built to 10 instead of 
n. 
 
5-fold cross-validation is also a common technique for evaluation. Here is a picture of how this one 
would work: randomly split n observations into 5 disjoint sets. 
 
 

 
Discussion: 
 
There is a bias-variance tradeoff in model evaluation. Bias is the error caused by erroneous assumptions 
in the learning algorithm. High bias can cause a model to miss relevant relationships between features 
and classes. Bias is what causes underfitting. 
 
Variance is the error from sensitivity to small fluctuations in the dataset. High variance causes the model 
to model noise in the training data. Variance is what causes overfitting. 
 
1. Do you think LOOVC or k-fold cross-validation produces more bias (underfitting)? 
 
 
 
2. Do you think LOOVC or k-fold cross-validation produces more variance (overfitting)? 
 
 
 
Example: 
Example of logistic classification. Below are 4 models (each with a different degree of polynomial for 
logistic regression). Just like with linear regression, we can create a polynomial model, so the function 
looks like this: 
 

log (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1𝑋 +  𝛽2𝑋2 + ⋯ +  𝛽𝑚𝑋𝑚 

This can also be applied to multidimensional data (two or more predictor variables in the observations) 
and polynomials can be created. So, for a dataset with 2 predictor variables (X, Y), we could have a 
quadratic function of both: 
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log (
𝑝

1 − 𝑝
) =  𝛽0 +  𝛽1𝑋 +  𝛽2𝑋2 + 𝛽3𝑌 + 𝛽4𝑌2  

 
Below are the boundaries created for four different models (degree 1, degree 2, degree 3, and degree 
4): 
 

 
The dashed purple line is the optimal classifier. The black line shows the boundary created by the logistic 
regression model. We can look at the test error and training error to get the best model of the four (one 
that does not overfit too much or underfit too much): 
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Blue line (bottom line) is training error 

Black line (middle line) is 10-fold CV error 
Orange line (top line) is test error [available because data was simulated and have optimal classifier, but 

not usually available for datasets] 
 

Note that the figure fits up to degree 10 polynomials for the dataset shown in the previous figure. The 
x’s show the minimum value along the orange and black lines. Fourth order polynomial would be the 
best of this set. 
 

Confusion Table and Equations 
As you will see in lab, a confusion table shows 4 quadrants: 
    Event  No_Event 

Predicted Event  A  B 

Predicted No_Event C  D 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴

𝐴 + 𝐶
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐷

𝐵 + 𝐷
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐴

𝐴 + 𝐵
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

(𝐴+𝐷)

(𝐴+𝐵+𝐶+𝐷)
 = 

𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 

 
Practice: Calculate all four terms for the following confusion table: 
  Real Yes Real No 
Predicted Yes 35  20  Sensitivity/Recall = ________ 
Predicted No 15  30  Specificity = __________ 
      Precision = __________ 
      Accuracy = __________ 
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A visual reminder of precision and recall. What would be the confusion matrix for this dataset? 
TP = True Positive 
FP = False Positive 
FN = False Negative 
TN = True Negative 

 
  
 A=TP= ______  B=FP= _______  
 
 C=FN= ______  D=TN= ______  
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CS 438: Classification: Bayes Classifier 

 
Earlier, we looked at logistic regression and KNN to create models to classify observations into two or 
more classes.  A third classification method is called the Bayes Classifier (or Naïve Bayes). 
 
First, we will look at creating a Bayes Classifier for categorical data (predictor variables are categories 
rather than numerical, continuous data). I think this will motivate better how the classifier works. 
 
Example based on Jason Brownlees’ tutorial: 
 
Suppose you want to classify a new day as “go-out” or “stay-home”. The decision is based on the 
weather and the car working properly. For weather, the categories are “sunny” and “rainy”. For the car, 
the categories are “working” and “broken”. 
 
We will convert the categories into numerical data as follows: 
 

Variable 1 0 

Weather Sunny = 1 Rainy = 0 

Car Working = 1 Broken = 0 

Class Go-out = 1 Stay-home = 0 

 
 
Assume we have the following data 

Weather Car Class 
1  1 1 
0  0 1 
1  1 1 
1  1 1 
1  1 1 
0  0 0 
0  0 0 
1  1 0 
1  0 0 
0  0 0 

 
 
Just looking at the data alone, what pattern(s) do you see? 
 
 
 
 
 
Now, let’s consider classification probabilities, just like we did for logistic regression.  
 

𝑃(𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡) =
𝐶𝑜𝑢𝑛𝑡(𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡)

𝑇𝑜𝑡𝑎𝑙_𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
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𝑃(𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) =
𝐶𝑜𝑢𝑛𝑡(𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒)

𝑇𝑜𝑡𝑎𝑙_𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

 
In our example above, since there are 5 observations for each class, the probability for each class is 0.5. 
 
Now, let’s look at conditional probabilities for weather based on the class. 
 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡) 
 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡) 
 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) 
 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) 
 
 
If we had some way to calculate these probabilities given our data… How might we do this? Seems 
backwards – going out is predicted from the weather and not the other way around. 
 
 
 

Bayes’ Theorem: 
Suppose A and B are events and the probability of B is non-zero. 
 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 
P(A|B) is the conditional probability of A happening given that B is true. 
P(B|A) is the conditional probability of B happening given that A is true. 
P(A) and P(B) are the probabilities of observing A and B independently of each other. 
 
Note that P(A|B) is also referred to as the posterior probability (degree of belief of A given B). 
Note that P(A) is also referred to as the prior probability (initial degree of belief of A). 
The quotient (P(B|A)/P(B)) is known as the support B provides for A. 
 
 
Proof: 
Assume A and B are events, each with at least one observation so the probabilities are non-zero. From 
the definition of conditional probability, we know that: 

𝑃(𝐴|𝐵) =  
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

 
Also, 

𝑃(𝐵|𝐴) =  
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
 

 
where P(A ∩ B) is the joint probability of both A and B being true. Since intersection is symmetric, the 
P(A ∩ B) is equal to P(B ∩ A). 



69 
 

 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) 

from combining the first two equations. 
 
Thus, we can isolate P(A|B), so that: 
 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 
Now, we have a way to calculate the probabilities for weather and car, given our classifications. 
 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡) 
𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝐺𝑜_𝑜𝑢𝑡) 

𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑠𝑢𝑛𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) 
𝑃(𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑟𝑎𝑖𝑛𝑦 | 𝑐𝑙𝑎𝑠𝑠 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) 

 
P(B|A) calculations: 

P(c = g | w = s) = 0.67 
P(c = s | w = s) = 0.33 
P(c = g | w = r) = 0.25 
P(c = s | w = r) = 0.75 

 
P(A|B) calculations using theorem: 

P(w = s | c = g) = 0.67 * 0.6 / 0.5 = 0.8 
P(w = r | c = g) = 0.25 * 0.4 / 0.5 =  0.2 
P(w = s | c = s) = 0.33 * 0.6 / 0.5 = 0.4 
P(w = r | c = s) = 0.75 * 0.4 / 0.5 = 0.6 

 
We can do the same sets of calculations for the car variable and we get: 
 
Car: 

P(car = w | c = g) = 0.8 
P(car = b | c = g) = 0.2 
P(car = w | c = s) = 0.2 
P(car = b | c = s) = 0.8 

 

To Classify A New Observation 
We simply multiply the probabilities together (here we are assuming the variables in the model are 
independent) to determine which class yields a higher number. 
 
Suppose the new observation is weather = sunny and car = working. 
 

𝑃(𝑐 = 𝐺𝑜𝑜𝑢𝑡) = 𝑃(𝑤 = 𝑠 | 𝑐 = 𝐺𝑜𝑜𝑢𝑡) ∗ 𝑃(𝑐𝑎𝑟 = 𝑤 | 𝑐 = 𝐺𝑜𝑜𝑢𝑡) ∗ 𝑃(𝑐 = 𝐺𝑜𝑜𝑢𝑡) 
 

𝑃(𝑐 = 𝐺𝑜𝑜𝑢𝑡) = 0.8 ∗ 0.8 ∗  0.5 = 0.32 
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𝑃(𝑐 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) = 𝑃(𝑤 = 𝑠 | 𝑐 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) ∗ 𝑃(𝑐𝑎𝑟 = 𝑤 | 𝑐 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) ∗ 𝑃(𝑐
= 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) 

 
(𝑐 = 𝑆𝑡𝑎𝑦_ℎ𝑜𝑚𝑒) = 0.4 ∗ 0.2 ∗  0.5 = 0.04 

 
Since 0.32 exceeds 0.04, the class is Go_out for the new observation. 
 
Activity: Complete the calculations for the other three combinations of Weather and Car. 

Outcome Weather Car Probability 

Go Out Sunny Working 0.32 

Stay Home Sunny Working 0.04 

Go Out Rainy Broken  

Stay Home Rainy Broken  

Go Out Sunny Broken  

Stay Home Sunny Broken  

Go Out Rainy Working  

Stay Home Rainy Working  

 
1. Suppose the new observation is weather = rainy and car = broken. What is the probability calculated 
for Bayes for the class Go_out and for Stay_home? 
 
 P(c = Go_out) = ______________________________ 
 
 P(c = Stay_home) = ____________________________ 
 
 
2. Suppose the new observation is weather = sunny and car = broken. What is the probability calculated 
for Bayes for the class Go_out and for Stay_home? 
 
 P(c = Go_out) = ______________________________ 
 
 P(c = Stay_home) = ____________________________ 
 
 
3. Suppose the new observation is weather = rainy and car = working. What is the probability calculated 
for Bayes for the class Go_out and for Stay_home? 
 
 P(c = Go_out) = ______________________________ 
 
 P(c = Stay_home) = ____________________________ 
 
 Note: there wasn’t even an observation in the dataset with these values, yet we can still predict 
its classification. 
 
 

Add up all the probabilities for all 8 possibilities: _________________ 
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Extension to Continuous-Valued Variables 
The example above calculates the probabilities via counts or frequencies. With continuous-valued data 
(such as height of a person), we use the standard normal probability distribution, just as in EGR 361. 
 
Suppose a classifier decides if someone is male or female based on the following variables: 

• Height 

• Weight 

• Shoe Size 
 
Based on the dataset, we find the mean and variance of each variable for men in the dataset and for 
women in the dataset. Suppose this is the what we find: 
 

Gender Height 
mean 

Height 
variance 

Weight 
mean 

Weight 
variance 

Shoe Mean Shoe 
Variance 

Male 5.855 .0350 176.25 122.9 11.25 .9167 

Female 5.418 .0972 132.5 558.3 7.5 1.667 

 
Suppose we want to classify a 6-foot-person, 130-pounds with shoe size 8 as male or female: 
 
P(male) = N(6, 5.855, sqrt(0.035)) * N(130, 176.25, sqrt(122.9)) * N(8, 11.25, sqrt(.9167)) * 0.5 
=6.120 * 10-9 

 

P(female) = N(6, 5.418, sqrt(0.0972)) * N(130, 132.5, sqrt(558.3)) * N(8, 7.5, sqrt(1.667)) * 0.5 
= 5.378 * 10-4 
 

Here, N(A, B, C) means the probability density function for a Normal distribution with mean B 
and standard deviation C. 

 
Since the probability for being female is higher than for being male with these numbers, the 
classification is female. 
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CS 438: Decision Trees 
 
What decisions have you made today? 
 
 
 
 
 
 
Which of those decisions were binary? (yes/no, go/stay, etc.) 
 
 
 
 
Class Activity: 
Suppose you want to build a model to classify students at UP as those who participate in music 
ensembles or not.  
 
 a. Do you participate in a UP music ensemble (yes or no)? ____________ 
 
 b. Suppose we know the number of credits a student is taking, their gender identity, and if they 
commute or are residential. 
 
  For yourself, how many credits are you taking this semester? _________ 
 
  What is your gender identity (female, male, non-binary)? ___________ 
 
  Are you a commuter or are you residential? _____________ 
 
OK, we will try to build a tree classifier for the set of students in this class. We want to know which of 
the three variables (credits, gender, or commuter) is most meaningful. How would you define 
meaningful in terms of giving a good classification? 
 
 
OK, let’s see what happens. 
1. Get up and go to two sides of the room for < 16 credits on one side and >= 16 credits on the other. 
 
 How many taking < 16 credits are in a musical ensemble? ________ Size of group? ____ 
 
 How many taking >= 16 credits are in a musical ensemble? _________ Size of group? ____ 
 
2. Now, divide yourselves by gender. 
 
 How many female are in a musical ensemble? ________ Size of group? _____ 
 
 How many male are in a musical ensemble? ________ Size of group? ______ 
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 How many non-binary are in a musical ensemble? ________ Size of group? _______ 
 
3. Now, divide yourselves by commuter. 
 
 How many commuters are in a musical ensemble? ________ Size of group? ______ 
 
 How many residential students are in a musical ensemble? ________ Size of group? ______ 
 
 
4. Which of the three features/variables is most meaningful for classification? _____________ 
 (Which creates most homogeneous subgroups?) 
 
 
OK, let’s build a tree with that feature at the top: 
 
    Feature: _______________ 
 
   Value: ___ Value: ______ 
    
  Musical ensemble=yes  musical ensemble=no 
 
How well did this single-feature classifier do? 
 
 
Activity 1: Work in a small group to continue building this tree with other features until you have what 
you think is a good classifier. Then, we will compare them. 
 
Build decision tree here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose another student taking 18 credits, is a commuter, and is female is given to your classifier. How 
does your tree classify the student? _______________ 
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Activity 2: Here is an example of a large decision tree to classify flowers (irises). Left branches are true. 
Right branches are false. Study the tree to see which features are used in the model and determine the 
possible classes. 

 
Figure from https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-

algorithm.html 
 

1. What features are used to classify observations? 
 
 

2. What property is true for all leaves in this tree? 
 
 

3. How many samples are in the training set? 
 
 

4. Do features get used more than once along a path to a leaf? 
 
 

5. Which class has the shortest petal lengths? 
 
 
 

https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-algorithm.html
https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-algorithm.html
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6. Suppose a new iris is classified with this tree. The iris has petal length 3.5 cm, petal width 2.0 
cm, and sepal length of 6.0 cm. What class would this decision tree predict? ________________ 

 
7. Suppose an iris as petal length 5.0 cm, petal width 1.25 cm, and sepal length of 4.0 cm. What 

class would this decision tree predict? ______________ 
 
 

Types of Decision Trees 
If the response variable for the decision tree is a category or class, it is called a classification tree. 
 Examples:  

The tree predicts if a customer will make a purchase.  
The tree predicts type of disease. 

 
If the response variable for the decision tree is numerical (similar to linear regression), it is called a 
regression tree. 
 Examples: The tree predicts the price of a house.  

The tree predicts the recovery time after an injury. 
 

Name an example response for a classification tree: ____________________ 
 

Name an example response for a regression tree: ____________________ 
 
Variables (Features): 
Variables (features) can be numerical and/or categorical. An example of a numerical variable is a 
person’s age. An example of a categorical variable is their occupation. Decision trees can be built for 
both types of variables.  
 
For numerical variables, the split is determined based on minimizing variance of the two “split” groups. 
In the iris tree example above, you will see the first decision is petal length <= 2.45. The value 2.45 was 
determined the best threshold because it split the data into a set of 50 that are all setosa and the other 
100 are versicolor or virginica. 
 
For categorical variables, the split is by category. Some tree-building algorithms will always split binary, 
so if there are three categories (A, B, C), then the first split may keep A/B together and separate C, and 
then split A from B in the next level down. Some tree-building algorithms will create non-binary trees 
and make three or more children for three or more values per category. 
 

Advantages and Limitations of Decision Trees 
Activity 3: In small groups, discuss the advantages and limitations of decision trees. Think about fitting 
to training data, explaining the model to others, impacts of outliers, and the assumptions about types of 
data for variables and the distributions of data for variables. 
 
Advantages: 
 
 1.  
 
 2. 
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 3. 
 
Limitations: 
 1.   
 

2. 
 
 3. 
 

Tree Construction 
Trees are built in a greedy fashion, choosing the best “split” at every node. The best split is determined 
by which feature provides the best homogeneity among the children. This value of homogeneity is 
usually quantified via the gini impurity, entropy, information gain, and/or variance reduction. These 
metrics are defined later. They all create a measurement of how “pure” the sub-children nodes would 
be based on the feature selection.  
 
The recursive greedy algorithm is as follows: 
Create Root_Node representing the entire dataset 

Build_tree(Root_Node) 

 

Build_tree(Node): 

If stopping condition is met: 

 Create Leaf_Node (terminal node) with classification 

Else: 

 Create Decision_Node, split on feature to maximize homogeneity among children 

 For all children d of Decision_Node, Build_tree(d) 

 
Here is a graphical view of the types of nodes that are made: 

 
Figure from https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-

scratch-in-python/ 
 
We need to define the stopping condition. Here are some possibilities: 

• Leaf is pure (all observations are in one class) 

• Tree has maximum depth provided at start 

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
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• Leaf has fewer than X observations 

• Run out of categorical variable splits 
 
Which of these stopping conditions could make really tall trees? _____________________ 
  
Would really tall trees be subject to overfitting or underfitting? _____________________ 
  
 
One strategy for tree construction to reduce overfitting is to build tall trees and then prune some nodes 
to make the tree shorter. Other strategies include bagging, boosting, and random forests to create a set 
of trees that each “vote” for the overall classification to reduce overfitting. 
 

Choosing the Best Node to Split 
We will look at metrics for nodes representing categorical data first. These are gini and entropy.  
 
Gini Impurity: 
This is a fairly straightforward metric: 

𝑝𝑖 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡, 𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝐺𝐼𝑁𝐼(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =  ∑ 𝑝𝑖

𝐽

𝑖=1

∑ 𝑝𝑘

𝑘 ≠𝑖

=  ∑ 𝑝𝑖

𝐽

𝑖=1

(1 − 𝑝𝑖) = 1 −  ∑ 𝑝𝑖
2

𝐽

𝑖=1

 

 
1. If all observations for a feature are in the same class, what is the GINI value? ____  

 
2. If J = 2 and half of the observations are in one class and half are in the other using the feature, 

what is the GINI value? ___________ 
 

3. Suppose there are 1 million classes, each with one observation in the class (huge impurity). 
What is the GINI value? ______________  

 
Now that we have a metric for splitting, we use that metric to calculate information gain using that 
metric. Information gain is a metric that tells us how much better the children of the nodes explain the 
classification. At each split, we choose the feature that maximizes information gain. The information 
gain tells us how important that feature is in the model. 
 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝐺𝐼𝑁𝐼(𝑝𝑎𝑟𝑒𝑛𝑡) − 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒(𝐺𝐼𝑁𝐼(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)) 
 
Apply GINI to the example data: 
Suppose there are 30 students in the dataset and we are trying to classify if the students play soccer. 

 Plays Soccer Does Not Play Soccer 

Sample 15 of 30 15 of 30 

Gender: Male 13 of 20 7 of 20 

Gender: Female 2 of 10 8 of 10 

Class: Senior 9 of 16 7 of 16 

Class: Junior 6 of 14 8 of 14 

 
Attribute: Gender 
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𝐺𝐼𝑁𝐼(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑎𝑙𝑒) = 1 − [(0.65) ∗ (0.65) + (0.35) ∗ (0.35)] = 0.455 
 

𝐺𝐼𝑁𝐼(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) = 1 − [(0.2) ∗ (0.2) + (0.8) ∗ (0.8)] = 0.32 
 

𝐺𝐼𝑁𝐼(𝑅𝑜𝑜𝑡) =  1 − [(0.5) ∗ (0.5) + (0.5) ∗ (0.5)] = 0.5 
 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐺𝑒𝑛𝑑𝑒𝑟) = 0.5 − [(
10

30
) (. 32) + (

20

30
) (. 455)] = 0.09  

 
Attribute: Class 

𝐺𝐼𝑁𝐼(𝐶𝑙𝑎𝑠𝑠 = 𝐽𝑢𝑛𝑖𝑜𝑟) = 1 − [(0.4285) ∗ (0.4285) + (. 5714) ∗ (. 5714)] = 0.489 
 

𝐺𝐼𝑁𝐼(𝐶𝑙𝑎𝑠𝑠 = 𝑆𝑒𝑛𝑖𝑜𝑟) = 1 − [(0.5625) ∗ (0.5625) + (. 4375) ∗ (. 4375)] = 0.492 
 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐶𝑙𝑎𝑠𝑠) = 0.5 − [(
14

30
) (. 489) + (

16

30
) (. 492)] = 0.0094 

 
Since InfoGain for Gender > InfoGain for Class, Gender is chosen as the category for the first split. 
 
    Root 

 Gender=female  Gender=male 

 
Now, we have two nodes to further split. Let’s look at the Gender=female node. In the dataset, there 
are 10 females. Suppose of those 10, we have the following: 

• 1 is a junior who plays soccer 

• 1 is a senior who plays soccer 

• 5 are juniors who do not play soccer 

• 3 are seniors who do not play soccer 
 
This is our only feature that can separate, since this group contains only women. It would end up 
classifying both leaves as “Do not play soccer”. If our dataset had more features, then we would have 
more choices at each recursive split. 
 
Note: Some implementations speed up the 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 metric by removing the 𝐺𝐼𝑁𝐼(𝑅𝑜𝑜𝑡) calculation 
and instead maximize 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐴𝑣𝑒(𝐺𝐼𝑁𝐼(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)).  
 
Note: The CART implementation splits using the GINI metric. CART = Classification and Regression Trees 
(acronym used in data science). 
 
Entropy: 
Another measure for splitting is calculated based on entropy. Entropy is also a measure of the impurity 
of an attribute. 
 

𝑝𝑖 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡, 𝐽 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 
 

𝐻 =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) =  − ∑ 𝑝𝑖 ∗ lg (𝑝𝑖)

𝐽

𝑖=1
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1. Suppose all observations for the feature are in the class. What is the entropy? ________  

 
2. Suppose there are two classes, where the feature splits it into two groups of the same size, so 

the fraction for each class is 0.5. What is the entropy? _______  
 
You can see that entropy and GINI have similar behavior, just with different maximum values. As before, 
we have the same calculation for information gain, but use the entropy metric instead of the GINI 
metric. 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝐻(𝑝𝑎𝑟𝑒𝑛𝑡) − 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒(𝐻(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)) 
 
Dataset: 

 Plays Soccer Does Not Play Soccer 

Sample 15 of 30 15 of 30 

Gender: Male 13 of 20 7 of 20 

Gender: Female 2 of 10 8 of 10 

Class: Senior 9 of 16 7 of 16 

Class: Junior 6 of 14 8 of 14 

 
Attribute: Gender 

𝐻(𝑃𝑎𝑟𝑒𝑛𝑡) =  − (
15

30
) lg (

15

30
) − (

15

30
) lg (

15

30
) = 1.0 

 

𝐻(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑎𝑙𝑒) =  − (
13

20
) lg (

13

20
) − (

7

20
) lg (

7

20
) =  .934 

 

𝐻(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) =  − (
2

10
) lg (

2

10
) − (

8

10
) lg (

8

10
) =  .722 

 
Information gain for this feature is 1.0 – [(20/30) ∗ (.934)  +  (10/30) ∗ (.722)]  =  .137 
 
Attribute: Class 

𝐻(𝐶𝑙𝑎𝑠𝑠 = 𝑆𝑒𝑛𝑖𝑜𝑟) =  − (
9

16
) lg (

9

16
) − (

7

16
) lg (

7

16
) =  .988 

 

𝐻(𝐶𝑙𝑎𝑠𝑠 = 𝐽𝑢𝑛𝑖𝑜𝑟) =  − (
6

14
) lg (

6

14
) − (

8

14
) lg (

8

14
) =  .985 

 
Information gain for this feature is 1.0 – [(16/30) ∗ (.988)  +  (14/30) ∗ (.985)]  =  .0134 
 
Thus, between the two features, Gender has higher information gain than Class, so we choose Gender 
for splitting first. 
 
Note: In practice, GINI and entropy create the same tree most of the time. Because log takes some time 
to compute, entropy is a slightly slower calculation. 
 
Note: ID3 (Iterative Dichotomiser 3) uses entropy for the splitting metric. 
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Activity: 
In small groups, perform the calculations to decide which node to split on using entropy and information 
gain. 
 
Here is the dataset. Play Game is the class you are deciding. The four features are Outlook, 
Temperature, Humidity, and Windy. 

Outlook Temperature Humidity Windy Play Game? 

Sunny Hot High False No 

Sunny Hot High True No 

Overcast Hot High False Yes 

Rainy Mild High False Yes 

Rainy Cool Normal False Yes 

Rainy Cool Normal True No 

Overcast Cool Normal True Yes 

Sunny Mild High False No 

Sunny Cool Normal False Yes 

Rainy Mild Normal False Yes 

Sunny Mild Normal True Yes 

Overcast Mild High True Yes 

Overcast Hot Normal False Yes 

Rainy Mild High True No 

  
Each group will calculate the information gain of a different feature and then we will compare. 
 
First, we calculate the entropy of the root node for Play_Game.  

9 of 14 are Yes in the dataset 
5 of 14 are No in the dataset 

𝐻(𝑅𝑜𝑜𝑡) =  − (
9

14
) lg (

9

14
) − (

5

14
) lg (

5

14
) = 0.94 

 
Your group is assigned the feature: ______________________________ 
 
For example: Outlook and Temperature have three categories, so there will be three children. Humidity 
has two categories. Windy has two categories. 
 
Entropy(Feature=Category1) = _________________________ 
 
Entropy(Feature=Category2) = _________________________ 
 
Entropy(Feature=Category3 (if needed)) = __________________________ 
 
Weighted Average of Entropy of Children = __________________________ 
 
InformationGain(Feature) = _____________________________________ 
 
If you finish, try calculating the InfoGain for a different feature. Of the groups in the class, which has the 
best information gain? 
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CS 438: Decision Trees with Numerical Features 
And Regression Trees 

 
Decision trees can be created for categorical features and for numeric features. First, we will look at 
building classifiers with numeric features. 
 
Suppose the predictors are X1 and X2 for a dataset and we are outputting class blue or class red. Below 
is a visual about how the tree corresponds to the dataset: 
 

 
 

Figure from: https://www.datacamp.com/community/tutorials/decision-trees-R 
 
 
How do we find the first split? Look for the line that separates the dataset into two parts (line that goes 
across the box vertically or horizontally).  
 

Where is it? ___________________ 
 

OK, that becomes the root node. 
 
Now, it is just a matter of seeing the two boxes as two datasets for splitting. Let’s focus on the data 
where X2 < 0.3. In this box, there are two subsets, one above X1 > 0.8 and the other below X1 < 0.8. This 
is the next split, as you can see above in the tree. 
 
The tree and dataset also show the classification probability for the leaves assigning to the blue class.  
 
Does the classification of the scatterplot and the boxes make sense now? 



82 
 

Deciding Splits for Continuous Data 
For continuous data, how do we decide where the splitting point is? You iterate through the possible 
threshold values and use each for a potential split. Then, use one of the metrics (gini, entropy, or 
deviance residuals) to decide which threshold split is best. 
 
For example, if the dataset for variable age contains: 

2.1 
2.8 
3.5 
8.0 
10.0 
20.0 
50.0 
51.0 

 
Then, the possible splits are between each value, such as: 

2.45 
3.15 
5.75 
9.0 
15.0 
35.0 
50.5 

 

Regression Trees 
Decision trees can be created for numerical responses as well as categories. In this case, the tree is 
called a regression tree. 
 
The process is the same as building a decision tree, where the splits are determined by the best feature. 
Since the output is numerical, we can use residual sum of squares as the metric to minimize. So, we are 
trying to find the boxes in the dataset to minimize RSS.  
 
We choose the feature and splitting value that gives us the minimum SSE. 
 
We recursively continue this process until a stopping criterion is reached, such as: 

• No fewer than 5 observations in any leaf 

• No fewer than some percentage of dataset in any leaf 

• Max tree depth has been reached 
 
 



83 
 

 
 

Figure 8.3 from An Introduction to Statistical Learning 
 
Look at the figure above. 
 Top-left: Example of boundary boxes that COULD NOT be made from a tree 
 Top-right: Boundaries made from tree created in Lower-left 
 Lower-left: Regression tree 
 Lower-right: X1 and X2 projected onto Y (Y is the predicted output). Note that there are only 5 
different output regions, corresponding to the five levels in the figure. 
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Figure 8.4 from An Introduction to Statistical Learning 

 
Above is a regression tree to predict the salary of a baseball player (1000*e^(leaf value)). 
 
Suppose a baseball player: 

• Has played 5 years 

• Has 120 hits 

• Has 40 walks 

• Has 10 runs 

• Has 50 RBIs 

• Has 60 Putouts 
 
What is the predicted salary? ____________________ 
  



85 
 

CS 438: Ensemble Methods for Trees 
 
As you will see in lab, we can prune a tree to reduce overfitting. We can also keep a tree from getting 
too tall. These techniques alter a single decision tree. What if we instead create multiple trees? 
 
 
Ensemble methods create and combine multiple trees to make predictions.  
 
Activity: Each of you is a decision tree that predicts “sunny” or “rainy”. Think of your prediction now. 
 
 Number who predict sunny: ____________ 
 
 Number who predict rainy: ____________ 
 
 Total number in ensemble: ____________ 
 
 What does the ensemble say? (sunny or rainy) ____________ 
 
Now, how do we get multiple trees (aka, a forest)? 
 

Technique 1: Bagging (short for bootstrap aggregation) 
 
Suppose your dataset has 1000 observations. Instead of creating a single tree with all observations, we 
create B trees built from bootstrapped data. 
 
Bootstrap dataset: 
 1. Choose size N for the sample size for S 
 2. For i = 1 to N: 
  a. Select an observation O from the dataset D at random 
  b. Add observation to S 
  c. Put O back into D 
 
 
1. Can a bootstrapped dataset have repeated observations? ____________ 
 
2. Can a bootstrapped dataset not contain some observations from D? ____________ 
 
Bagging creates B unpruned trees, each from a different bootstrapped dataset. Then, to make a 
prediction on a new observation x, the results are simply: 
 

 For regression trees: 
1

𝐵
∑ 𝑓𝑏(𝑥)𝐵

𝑏=1  

 
 For classification trees: majority vote (most common occurring class) 
 
3. How does bagging reduce overfitting? 
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Handy validation set from bagging 
Note that bagging gives us a built-in validation set to test the accuracy of our model. We do not need to 
do cross-validation or create a training/validation test set. Since our dataset is bootstrapped, there are 
observations that are not in that bootstrapped datasets that built our trees. 
 
Out-of-bag (OOB) observation is one that was not used in the bootstrap to build the tree. 
 
Here’s an example of how we can use the OOB samples for testing the accuracy of the model. 
 

Suppose we have 1000 observations in D. 
Suppose N (bootstrap sample size) is 666. 
Suppose B (number of trees) is 300. 
 
Let O be one observation from D. 
 
Since the probability of O being selected to train any tree is about 0.67, there will be about a 
third of the trees for which O is not in the bootstrapped dataset. Let B’ be the ~100 trees for 
which O is not in the bootstrapped dataset. We use the ensemble B’ to make a prediction about 
O and record the error (misclassification for classifier or residual for regression). 

 
How do we choose N? 
 Can be all observations for smaller datasets 
 60% to 80% for larger datasets 
How do we choose B? 
 Run experiments to see which B produces better error rates 
 Larger B usually works well 
 

Technique 2: Random Forests 
 
Another technique, called random forests, produces an ensemble of trees, but produces the trees with 
variations due to restrictions on the splitting features. Note that bagging produces tree variations due to 
variations in the training set.  
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Figure of Tammy’s son Joel in a forest 

 
Random forests will decorrelate trees and create a wider variety of trees. 
 
Why would we restrict which features can be used to split the nodes? 
Consider the case of a dataset where one feature has high importance (most information gain, for 
example). Will that feature be the top node of most of the trees for bagged trees? ________________  
 
 
But, if we remove that central feature from our set of choices for the root node, then another feature 
will become the first decision in the tree. 
 
To create a random forest of B trees: 
 1. Choose m = number of predictors that will be used at each split 
 2. Let p = number of predictors in dataset D 
 3. For i = 1 to B 
  a. Create bootrapped dataset S 
  b. Build decision tree from D with split restriction of a random m from p predictors on S 
 
 
Then, the classifier or regression output is done in the same way as bagging: for regression, it would be 
an average. For classification, it would be the class with the most votes. 
 
What fraction of trees will have the central feature as the root node? ___________ 
 
How do we choose m? 
 Usually m = sqrt(p) is a good place to start for classification 
 Usually m = p/3 is a good place to start for regression 
 Can do this experimentally 
How do we choose B? 
 Larger B is usually better, so we experiment until we see the error rate be consistent 
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Figure 8.10 from In Introduction to Statistical Learning 

 
Figure 8.10 shows the classification error for a random forest (classifying cancer type from 15 
predictors). When m = p, this is equivalent to bagging. When m = sqrt(p), the error rate is the lowest. 
You can also see that 300 to 500 trees has similar results. 
 

Technique 3: Boosting 
 
This technique builds trees slowly, converting weak learners into a strong learner. 
 
A weak learner does slightly better than random guessing. 
 
Can we turn this weak learner into a strong leader? (Question posed in 1988) 
 Yes, through boosting. There are many forms of boosting and many implementations, but here 
are the general principles: 
 
Boosting Principles for Classification: 

1. Learn slowly 
2. Weight observations that are classified poorly more strongly in next tree constructed 
3. Adjust model at each iteration 
 (here, if boosting is done with trees, then trees are built successively, instead of in 
parallel) 

 
Here is an example from https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-acf7c1585cb5: 
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Suppose X1 is the data value in the x-axis dimension and X2 is the data value in the y-axis dimension. 
Suppose Box 1 is our first tree constructed. Note that this would have a single root with X1 < the value of 
the line. It classifies the two observations in the blue zone correctly. However, it misclassifies three 
observations in the red zone. 
 
The three observations that were misclassified now get a higher weight when creating the next tree. Box 
2 is the next tree. Since those three +’s are now much larger, the best split is now the vertical line in Box 
2. This one misclassifies three red as blue. 
 
Box 3 is then constructed with the heavily weighted – misclassified observations as blue.  
 
Now, we have three classifiers (short trees) that combine to make Box 4. Box 4 is the final classifier, 
where each of Box1, Box2, and Box3 have equally weighted votes.  
 
Boosting Principles for Regression: 

1. Fit new predictor to residual errors made by previous predictor 
2. Each new tree added reduces residual error 
3. Many ways to implement boosting algorithm (parameter estimation via gradient descent for 
example) 
 

Algorithm 8.2 in An Introduction to Statistical Learning  shows an algorithm for boosting for regression 
trees. 
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Figure from https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-acf7c1585cb5 
 
In this example, there is one predictor value x that maps to a response variable y. The left panel shows 
the actual function for these points. 
 
Tree 1 is the first tree constructed (ordinary regression tree). Note that there are four leaves in tree 1 
since there are four different y values that are possible. Well, let’s look just at tree 1. 
 
Which data points (x-values) are estimated well? _________________________ (circle them above) 
 
Which data points (x-values) are estimated poorly? _______________________ (circle them above) 
 
So, just having tree 1 would not give us a great regression tree. 
 
We’ll build tree 2 not from the original y values, but from the residuals from tree 1 (recall that the 
residual is the observed minus the predicted value). See the tree 2 panel. Tree 2 would have 4 leaves, 
since there are four different levels. 
 
Then, tree 3 is built from the residuals of tree 2. Tree 3 has four leaves as well, since there are four 
different levels. 
 
Now, we have a single prediction that is the sum of each of these trees. 
 
Let’s see how this works. Assume x = 7. 
 What is the output of tree 1 for x = 7? ____________ 
 
 What is the output of tree 2 for x = 7? ____________ 
 
 What is the output of tree 3 for x = 7? __________ 
 
    Add these up: _________ 
 
Note that if we had just used tree 1, the predicted value would be -0.5, which isn’t even close to the 
ground truth. 
 
How well do the trees predict x = 2? _______________ 

https://medium.com/greyatom/a-quick-guide-to-boosting-in-ml-acf7c1585cb5


91 
 

CS 438: Principal Component Analysis 
 
Suppose we have a dataset of N observations with P features/predictors (all features in this case are 
numerical; note that categorical data can become numerical). 
 

1. Suppose P is really large – 1000+. How do you decide which features to keep in the model? 
 
 
 
 

2. Why would we want to reduce the number of features? 
 
 
 
 
 
 
Reducing the number of features can give us data compression and/or remove features that are not 
helping the model (be it regression or classification). 
 
One way to reduce the number of features is through feature selection. Of the P features, keep m that 
give the best accuracy for the model. In this case, there is no data transformation. We have done this in 
lab by eliminating columns in the data or not using certain columns when building models. 
 

3. Is there another way you could reduce the number of features? 
 
 
 
Activity 1: Suppose we have a dataset that consists of Age, Weight, and Cholesterol. We want to predict 
blood pressure, but we do not want to keep all the features. Give at least two methods to reduce the 
number of features from 3 to <= 2. 
 
Method 1: 
 
 
Method 2: 
 
 
 
Suppose age and weight look like this: 
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Weight 
 
 
 
 
 
 
    Age 
 
 
Activity 2: How would you combine Age and Weight to give just one number to represent both for a 
person? 
 
 
 
 
 
 
 
Principal Components Analysis determines the best vectors that are “closest” to the data. Another 
interpretation is that the principal component is the projection with highest variance. 
 
The math relies on linear algebra (finding eigenvectors and eigenvalues), so if you have taken that 
course, this is an application of what you learned there. There is a tutorial on moodle if you are curious 
about how to do the math yourself. 
 
Some properties of principal components: 

• Each principal component is orthogonal to the others 

• The 1st principal component explains the data the best (just using one number) 

• The weights of the principal components are called loadings 

• The principal component score is often written with Z and is the linear combination of the 
loadings multiplied by the (predictor_value – mean(predictor_value)) 

• The sum of the squares of the loadings equals one (just so we get back unique loadings, 
remember a vector is just a projection, so we could scale that vector and have an infinite 
number of the same projections) 

• The # of possible principal components for an N X P matrix is min(N-1, P); usually P is smaller 
than N, so the # of principal components is P 

• We keep the k highest principal components to reduce the dimensionality of the features 

• Since a principal component is a projection, the loadings could be multiplied by -1 and we get 
the same projection, just with the vector pointing in the opposite direction. So, you can adjust 
the loadings by multiplying all by -1 if you want. 
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Suppose we collect data about a city’s population and the total amount of advertising that is spent in 
that city. We have to features: Population and Ad_Spending. We want to find the principal components, 
so we can reduce the dimensionality from 2 to 1. 

 
Figure 6.14 from An Introduction to Statistical Learning 

 
The dots are data observations (one per city). The green solid line is the projection of the first principal 
component. See how it extends along the dimension of the most variability? 
 
The dashed blue line is the second principal component. It is orthogonal to the first principal component 
and it projects along the second dimension with second-most variability. 
 
If we want to combine Population with Ad_Spending into a single metric, we can use the first principal 
score for each observation. 
 
The score Z1 for this dataset is computed with loadings 0.839 and 0.544. 
 
First, let’s check that the sum of squares of the loadings is equal to 1: 
 (.839)(.839) + (.544)(.544) = 0.999 
 

𝑍1 = 0.839 ∗ (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑀𝑒𝑎𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)) + 0.544 ∗ (𝐴𝑑 − 𝑀𝑒𝑎𝑛(𝐴𝑑)) 

 
So, now we can apply this linear combination to the entire set of observations and have a single score 
for each observation. 
 
Let’s look at the loadings graphically now. 
 
What is the approximate slope of that green line? 
 
 ________________ 
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What is the loading in the y-direction divided by the loading in the x-direction? 
 
 _________________________ 
 
 
For this dataset, the second principal component is shown by the blue dashed line. The loadings are 
0.544 and -0.839.  
 

𝑍2 = 0.544 ∗ (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑀𝑒𝑎𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)) − 0.839 ∗ (𝐴𝑑 − 𝑀𝑒𝑎𝑛(𝐴𝑑)) 

 
Do these loadings correspond correctly to the slope of the dashed line? 
 
 ____________________ 
 
How to the slopes of the two projections relate to one another? 
 
 ____________________________________ 
 
 
 

 
 

Figure 6.15 from An Introduction to Statistical Learning: shows the transformation from the 
observations to the axes of the two principal components 

 
Another way we can think of the principal components is just a linear transformation from Population 
and Ad to a different set of two dimensions. The big circle is where the second principal component 
intersects the first principal component. We can take every observation and draw a perpendicular line 
to the first principal component and that is the score of the second principal component. The first 
principal component score is the distance from the observation to the blue dot along the green 
projection. 
 
With this new graphic, we can see that if we compress Population and Ad into a single principal 
component score, those values are the x-values of the right figure. 
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Summary: 
 
1. We can use PCA to reduce the dimensions of the feature set. We can then use the principal 
components for linear regression, decision trees, or clustering. It is simply a way to capture higher 
dimensions with lower dimensions. 
 
2. PCA is NOT feature selection. PCA summarizes ALL the features. PCA can be used after features are 
selected or on the original dataset. 
 
3. How do we know how many dimensions to use in PCA? Just like with our other techniques, we can try 
different numbers of dimensions and cross-validate (for regression or classification) to see where the 
accuracy or SSE levels off. Or for the case without a response variable, we can see how much the 
principal components explain of the total variance of the data. 
 
4. When the number of observations is close to the number of features, overfitting (creating perfect 
models) becomes a major problem. For example, if we have two features and we have two 
observations, we can create a regression model (a line) that connects the points perfectly and the 
training error is 0. Well, if we have 100 observations and 100 features, we have the same issue (can fit a 
model perfectly). So, PCA gives us a tool to reduce the dimensionality of the dataset, so we are not as 
likely to overfit. 
 

 
 

Figure 6.23 from An Introduction to Statistical Learning: shows what happens when the number of 
variables (features) becomes equal to the number of observations (in this case, N = 20). See how R 

squared becomes perfect, the training error becomes perfect, and the test error grows large. 
 
5. It is important to scale the data (so mean of each feature is 0 with std dev of 1). Otherwise, the scale 
of the feature is going to dominate the variance and dominate the principal components. Just think back 
to the first example. If Ad spending is recorded in cents versus thousands of dollars, that dimension now 
becomes much more stretched. The figure below demonstrates this issue on a 4-dimensional dataset. 
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Figure 12.4 from An Introduction to Statistical Learning: shows what happens when the data is not 
scaled prior to PCA. Right figure shows that the loadings for the first two components can be very 
different for unscaled data. Notice the range of the principal component scores in the right figure 

versus the left figure. 
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CS 438: Clustering and k-Means 
 
Clustering is a form of unsupervised learning, where we are just trying to understand how observations 
relate to one another. We do not have a class or response variable associated with each observation. 
 
Activity 1: Suppose we have a two-dimensional dataset, so we can draw it below. Make a plot of 10 
observations where there are three distinct clusters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activity 2: Suppose we have a two-dimensional dataset, so we can draw it below. Make a plot of 10 
observations where there are no distinct clusters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activity 3: Given a set of points (2-dimensional), how would you determine where the clusters are? 
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Formal problem: Given N items with known distances between items and K (<= N), assign the N items 
into one of K clusters such that the total distance from each item to its cluster center is minimized. 
 
 
Note: We can find the optimal set of clusters by trying every combination (subset) of the N items into K 
groups, but how much running time is this? ____________ 
 
  
 
So, to create a faster algorithm, we use a greedy approach. K-means is a greedy clustering algorithm that 
given a dataset of features, will produce K sets of observations.  
 
 
K-means clustering heuristic (Lloyd): 
Input: n items, k = number of clusters to create 

 

For each item, randomly assign it to one of the k clusters. 

Calculate cluster centers for each cluster. 

While there are new cluster assignments: 

 For every item i: 

  Assign i to the cluster with closest center. 

 Re-compute cluster centers for each cluster. 

 

 
To calculate the square of Euclidean distance from item c to item t: 
D(<c1, c2, …, cm>, <t1, t2, …, tm>) = Σi [(cI – ti)2] // note that we do not need to take sqrt 

       // since all distances are positive and this  

       // reduces the number of computations 

 
To find the center c from a set of items A: 
center(A) = vector sum of items in A 

    | A | 

 
 
Class Activity: Get a random colored paper. Go to spot in the classroom. You are the data points we are 
clustering. We will create three clusters, so K = 3. 
 
 We will simulate k-means as a class. 
 
 
Discussion: 
 

1. Is this heuristic guaranteed to stop? __________________________ 
 
 
2. Will k-means always produce the same set of clusters? ____________________ 

 
 

3. How can we make this more robust, given that the initial random assignment affects the final 
clusters? _______________________ 
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4. What examples of datasets would be useful to cluster? 
 
 
 
Example k-means clustering: 
Suppose our dataset is two-dimensional with x1 and x2 as features. We will do k=2. 
  x1 x2 

obs1  0 0 

obs2  0 1 

obs3  1 1 

obs4  1 0 

obs5  .5 .5 

obs6  5 5 

obs7  5 6 

obs8  6 6 

obs9  6 5 

obs10  5.5 5.5 

 
What does the dataset look like plotted? How may clusters do you see? _________ 
 
Step 1: Randomly assign each item to one of two clusters: 

C1 = {obs1, obs4, obs5, obs8} 
C2 = {obs2, obs3, obs6, obs7, obs9, obs10} 

 
Step 2: Calculate cluster centers: 
 
Center(C1) = (<0, 0> + <1, 0> + <.5, .5> + <6, 6>) / 4 
       = <7.5, 6.5> / 4 
      = <1.875, 1.625> 
 
Center(C2) = (<0, 1> + <1, 1> + <5, 5> + <5, 6> + <6, 5> + <5.5, 5.5>) / 6 
        = <22.5, 23.5> / 6 
       = <3.75, 3.917> 
 
While no new cluster assignments: Calculate distance from each point to cluster center to assign point 
to cluster:  

Item Sq Distance to center C1 Sq Distance to center C2 Cluster assignment 

<0, 0> 1.8752 + 1.6252 = 6.15625 3.752 + 3.9172 = 29.405 C1 

<0, 1> 3.91 22.57 C1 

<1, 1> 1.16 16.07 C1 

<1, 0> 3.41 22.91 C1 

<.5, .5> 3.15 22.24 C1 

<5, 5> 21.16 2.74 C2 

<5, 6> 28.91 5.90 C2 

<6, 6> 36.16 9.40 C2 

<6, 5> 28.41 6.24 C2 

<5.5, 5.5> 28.16 5.57 C2 

Calculate cluster centers: 
Center(C1) = (<0, 0> + <0, 1> + <1, 1> + <1, 0> + <.5, .5>) / 5 
= <.5, .5> 
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Center(C2) = (<5, 5> + <5, 6> + <6, 6> + <6, 5> + <5.5, 5.5>) / 5 
= <5.5, 5.5> 
 
Calculate distance from each point to cluster center to assign point to cluster:  

Item Sq Distance to center C1 Sq Distance to center C2 Cluster assignment 

<0, 0> .5 60.5 C1 

<0, 1> .5 50.5 C1 

<1, 1> .5 40.5 C1 

<1, 0> .5 50.5 C1 

<.5, .5> 0 50.0 C1 

<5, 5> 40.5 .5 C2 

<5, 6> 50.5 .5 C2 

<6, 6> 60.5 .5 C2 

<6, 5> 50.5 .5 C2 

<5.5, 5.5> 50.0 0 C2 

 
No new cluster assignments, so STOP. The final assignment is in the above table. 
 
Another example with k = 3: 

 
Figure 12.8 from An Introduction to Statistical Learning. Shows the steps of k-means. 
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CS 438: Hierarchical Clustering 
 
As you read in the paper about clustering beyond k-means, there are many variations of clustering using 
centroids and distances to create groups. In all k-means variants, the value of k (# of clusters) is specified 
as an input parameter.  
 
An alternative to clustering with a target value for k is to perform hierarchical clustering, where we 
create a tree to showcase distance relationships. Once we have the tree constructed, we can inspect it 
to see where good cut-offs would be to create groupings. 
 

Algorithm: 
Input: NxN matrix D, representing distances between all pairs of observations 
Output: A tree where each leaf represents one observation 
 

Initialization: Each observation is in its own cluster {C1, C2, C3, … CN}. Let C denote the set of all 
clusters. 
Construct T tree (called a dendrogram) as follows: 
 While |C| > 1: 

a. Find the two closest clusters Ci and Cj 

b. Merge Ci and Cj to form Cij so it has all elements from both clusters 

c. Add new merge point in T to link clusters Ci and Cj [height of merge point is the 

distance from Ci to Cj] 

d. Remove rows and columns in D associated with Ci and Cj 

e. Add new row and column for Cij and input updated distances from Cij to all other 

clusters in C 

 

 
How is “closest” defined for clusters? 
 This can be defined by any metric, as long as distance is some numerical value. 
 For now, let’s assume Euclidean distance is way to calculate distance and “closest” is the closest 
two points of the clusters 
 
 
Example: 
Suppose we have 6 observations: 
 feature1 feature2 
obs1 3  7 
obs2 3  5 
obs3 1  2  
obs4 0  2 
obs5 4  1 
obs6 6  2 
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Need to calculate the distance matrix (input to hierarchical clustering): 
 

Obs1 Obs2 Obs3 Obs4 Obs5 Obs6  

 2 5.39 5.83 6.08 5.83 Obs1 

  3.61 4.24 3.61 4.25 Obs2 

   1 3.16 5 Obs3 

    4.12 6 Obs4 

     2.24 Obs5 

      Obs6 

 
 
Use metric: closest Euclidean distance between closest elements in each cluster metric 
 
Of the 6 clusters, which two are the closest? ________________________ 
 
Merge closest and update distances: 

Obs1 Obs2 Obs5 Obs6 {Obs3, Obs4}  

 2 6.08 5.83 5.39 Obs1 

  3.61 4.25 3.61 Obs2 

   2.24 3.16 Obs5 

    5 Obs6 

     {Obs3, Obs4} 

 
Of the 5 clusters, which two are the closest? _____________________ 
 
Merge closest and update distances: 

Obs5 Obs6 {Obs3, Obs4} {Obs1, Obs2}  

 2.24 3.16 3.61 Obs5 

2 

4 6 

5 

3 

1 
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  5 4.25 Obs6 

   3.61 {Obs3, Obs4} 

    {Obs1, Obs2} 

 
Of the 4 clusters, which two are the closest? ___________________ 
 
Merge closest and update distances: 

{Obs3, Obs4} {Obs1, Obs2} {Obs5, Obs6}  

 3.61 3.16 {Obs3, Obs4} 

  3.61 {Obs1, Obs2} 

   {Obs5, Obs6} 

 
Of the 3 clusters, which two are the closest? _______________ 
 
Merge closest and update distances: 

{Obs1, Obs2} {Obs3, Obs4, Obs5, Obs6}  

 3.61 {Obs1, Obs2} 

  {Obs3, Obs4, Obs5, Obs6} 

 
Of the 2 clusters, which are the closest? ________________ 
 
Overall hierarchical tree: 
 
 
       .42 
 
 
       .9   1.6 
2.16 
 
 
 
 
1 1         2.24      2.24 2        2 
 
 
Obs3 Obs4    Obs5   Obs6    Obs1        Obs2 
 
Activity: How do we create clusters? 
 We choose a distance from the top and draw a horizontal line. Think of this as actually cutting the 
tree by branches. All the leaves from each cutting form the observations in the cluster. 
 
Suppose we cut .2 from the top of the tree. How many clusters are created? ___________ 
 
 What are the elements of those clusters? __________________ 
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Suppose we cut 1.0 from the top of the tree. How many clusters are created? __________ 
 
 What are the elements of those clusters? __________________ 
 
Suppose we cut 2.0 from the top of the tree. How many clusters are created? _________ 
 
 What are the elements of those clusters? ______________ 
 
 
Distances (also known as dissimilarity): 
There are many ways to calculate distance, as we saw earlier in the course: 
 Euclidean 
 Manhattan 
 Hamming 
 1 - Correlation 
 
 Euclidean and (1-correlation) are commonly used. 
 
Linkages (metric for choosing closest clusters): 
  

Complete Compute all pairwise distances between observations in cluster A and cluster B; 
linkage is largest of the distances 

Single Compute all pairwise distances between observations in cluster A and cluster B; 
linkage is smallest of the distances [this is what the example above used] 

Average Compute all pairwise distances between observations in cluster A and cluster B; 
linkage is average of the distances 

Centroid Compute centroids for cluster A and cluster B; linkage is the distance between 
centroids [note: this can result in inversions, where merge points are below individual 
clusters and the tree can be difficult to interpret] 

 
Some notes about dendrograms: 

• Can rotate tree to create several equivalent trees 

• Read from the leaves up to merges to understand similarity. Just because two observations are 

adjacent leaves in the tree does not mean they are similar. 

• When reading dendrograms, the distance between observations is estimating by looking at the 

height of their first common merge point. 

• Not the optimal set of clusters; hierarchical clustering is greedy (makes best choice at each step) 

• Runtime is: ______________ 

 
Activity: Continue creating the dendrogram for the dataset shown below. This is Figure 12.13 from an 
Introduction to Statistical Learning. The top-left part of the figure shows the original 9 observations. The 
top-right part of the figure shows the first merge. The bottom-left part shows the second merge. The 
bottom-right shows the third merge. 
 
Use Euclidean distance and complete linkage. 
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Continue drawing tree: (for complete linkage, take the max of the pairwise distances) 
The next merge is a close call. Assume distance(1,4) is smaller than distance(6,2). 
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Final Solution (left) and Original Dataset (right): 

 
Figure 12.12 from An Introduction to Statistical Learning with Applications in R 

 
 

If time: Build the tree for the dataset above using Euclidean distance and single linkage. 
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CS 438: Data Visualization 
 
Review the best data visualizations from the New York Times: 
https://www.informationisbeautifulawards.com/news/118-the-nyt-s-best-data-visualizations-of-the-
year 
 
Review different types of visualizations here: 
https://www.tableau.com/learn/articles/data-visualization 
 
1. For your project, what data models did you build? 
 
 
 
 
 
2. Choose at least two visual representations from the list that might be helpful for to show data and 
models for your data science project: 
 
A. Visualization #1 Type: _________________________ 
 What kind of data does it best depict? 
 
 
 
 
 
 What are its strengths? 
 
 
 
 
 
 What are its weaknesses? 
 
 
 
 
 
 How might it showcase the project data and models? 
 
 
 
 
  

https://www.informationisbeautifulawards.com/news/118-the-nyt-s-best-data-visualizations-of-the-year
https://www.informationisbeautifulawards.com/news/118-the-nyt-s-best-data-visualizations-of-the-year
https://www.tableau.com/learn/articles/data-visualization
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B. Visualization #1 Type: _________________________ 
 What kind of data does it best depict? 
 
 
 
 
 
 What are its strengths? 
 
 
 
 
 
 What are its weaknesses? 
 
 
 
 
 
 How might it showcase the project data and models? 
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CS 438: Association Rules from Sets 
 

Review: What is a set? 
 
Activity 1: 
Suppose you have a store and record everything purchased in the same transaction. That transaction 
has a set of items. 
 
Example (each set on its own line): 
Milk apples carrots bread butter 

Butter bread yogurt eggs 

Milk yogurt eggs lemon apples cereal 

Cereal milk 

Carrots bread 

Soda peanuts chips eggs 

Cereal milk 

Yogurt soda eggs cereal 

Cereal apples butter eggs 

Apples eggs carrots  

 
1. Do you see any patterns among the sets? 
 
 
2. Could you define any of these as rules, such as Milk -> Butter? (in other words, if milk is bought, then 
butter is bought?) 
 
 
These are called association rules or market basket analysis. The Apriori algorithm creates these rules by 
finding itemsets based on frequencies and then building rules from the itemsets. 
 

Apriori Algorithm: Finding Itemsets 
First, we need to define support:  
 

Support(L) = percentage of transactions that contain L, where L is a set 
 
Minimum Support = lower threshold for determining itemsets 

 
1. Suppose bread has support of 60% in a basket. Could {bread, butter} have support > 60%? ______ 
 
D = transaction data 

M = minimum support 

N = size of largest itemset to consider 

 
Apriori(D, M, N): 

 K = 1 

 Lk = {itemsets of size 1 with minimum support M} 

 While Lk is non-empty and K < N: 

  Generate candidate itemsets of size k+1 from Lk 

  Calculate support for candidate itemsets 

  Lk+1 = candidate itemsets with minimum support M 

  K = K+1 

 Return union of Lk for k=1 to N 
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Activity 2: Calculate the support for the 1-itemsets: 
Milk apples carrots bread butter 

Butter bread yogurt eggs 

Milk yogurt eggs lemon apples cereal 

Cereal milk 

Carrots bread 

Soda peanuts chips eggs 

Cereal milk 

Yogurt soda eggs cereal 

Cereal apples butter eggs 

Apples eggs carrots  

 
Support(Milk) = __________________ 
Support(Butter) = ________________ 
Support(Yogurt) = ________________ 
Support(Eggs) = ______________ 
Support(Bread) = _____________ 
Support(Carrots) = _____________ 
Support(Apples) = ______________ 
Support(Cereal) = ______________ 
Support(Lemon) = ______________ 
Support(Soda) = _______________ 
Support(Peanuts) = ____________ 
Support(Chips) = ______________ 
 
1. Which of the these have minimum support of 0.35?_________________ 
 
Now, create 2-itemsets from these 1-itemsets: 
Support(Milk,Eggs) = ________________  
Support(Milk, Apples) = _______________  
Support(Milk, Cereal) = _______________  
Support(Eggs, Apples) =_______________  
Support(Eggs, Cereal) = _______________  
Support(Apples, Cereal) = ________________  
 
2. Which of these have minimum support of 0.35? _________________________  
 
3. Does the algorithm to generate itemsets keep going? _______________  
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Apriori Algorithm: Creating Rules 
Once we have the itemsets, we now can create rules such as X -> Y.  
 
There are three common metrics used to generate rules: 

• Confidence 

• Lift 

• Leverage 
 
All use the support metric defined above. 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∧ 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
 

 

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∧ 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ∗ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
 

 
𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒(𝑋 → 𝑌) = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∧ 𝑌) − 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ∗ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌) 

 
 
Activity 3: Let’s apply these metrics. 
 
Suppose X and Y = {bread, milk, eggs} with support 0.2 
Suppose X = {bread, eggs} with support 0.2 
Suppose Y = {milk} with support 0.4 
 
1. What is the confidence of X -> Y? _____________________  
 
2. What is the lift of X -> Y? _______________________ 
 
3. What is the leverage of X -> Y? ___________________ 
 
 
Note: Confidence does not consider the support of just the set Y in the calculation, so it cannot tell if it is 
coincidental. Lift and leverage do consider the support of Y. 
 
4. What is the range for confidence? _________________ 
 
 
Lift greater than 1 indicates usefulness for the rule. 
 
Leverage greater than 0 indicates usefulness for the rule. 
 
 
5. In which applications would this data analysis approach be useful? __________________ 
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CS 438: Big Data Tools 
 
Research one of the following platforms/tools: 

• Apache Hadoop 

• Apache Storm 

• Apache Spark 

• Apache Cassandra 

• Apache Flink 

• MongoDB 

• Lumify 

• Kanini 

• HPCC Systems 

• Tableau 

• Sisence 

• Cloudera 

• Domo 

• Cloud infrastructure (Azure, AWS, Google, Oracle, …) 

• Or choose another one you want to research 
 
What platform/tool did you research? 
 
 
 
 
Provide at least two concrete use cases for this tool: 
 1. 
 
 
 
 
 2. 
 
 
 
 
What are the limitations (cost, size, update time, etc.) of this tool? 
 
 
 
 
 
 
 
 
 
Be ready to share about your tool with the whole class. 
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CS 438: Ethics Considerations 
 

Refer to the paper “Big Data Ethics” by Andrej Zwitter published in Big Data & Society, July – December 
2014, pages 1 – 6. Andrej Zwitter is from the University of Groningen, in the Netherlands. 
 
 
Activity 1: Consider the topics we discussed in the course. Make a list of topics related to data analytics 
that may require rethinking of philosophy, ethics, policy-making, or research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ethics Framework (from the paper): 
 
Framework for ethics in this paper comes from moral responsibility of the individual. This framework is 
referred to as moral agency. 
 
Causality: Agent can be held responsible if the ethically relevant result is outcome of its actions. 
 
Knowledge: Agent can be blamed for result of its actions if it had knowledge of the consequences. 
 
Choice: Agent can be blamed for the result if it had the liberty to choose an alternative without greater 
harm for itself. 
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Activity 2: Ethical Big Data Challenges Consider the concepts below (privacy, group privacy, propensity, 
research ethics) and answer the questions. 
 
1. Privacy (as individuals): What data is collected? What every day actions are transparent? 
 
 What is an example of data that may be collected that impacts your privacy? 
 
 
 
 
 
2. Group Privacy: 1) Taking a large dataset and filtering to just one individual, even though the dataset is 
anonymous. 2) Target people to behave in a certain way, 3) Hyper-connectivity (social media, for 
example) provides access to bots 
 
 What is an example of data that could impact group privacy? 
 
 
 
 
 
 
 
3. Propensity: making predictions about what people are going to do (for example, commit a crime or 
have the demographics for which domestic violence is more likely) 
 
 What is an example of data that could make predictions that raises ethical questions? (We have 
seen some of these in the papers in the course) 
 
 
 
 
 
 
4. Research Ethics: ethical codes and standards for privacy and data use, informed consent for data use, 
and maintaining privacy of individuals in research studies 
 
 Who should be governing data collection and use? At UP, we have an Institutional Review Board 
that reviews all studies involving people. Medical schools and clinics have a review board. But what 
about less formal research studies?  
  



115 
 

CS 438: Takeaways 
 
1. What themes will you take away from this course? 
 
 
 
 
 
 
 
2. How do you look at data differently now after taking this course? 
 
 
 
 
 
 
 
 
3. Is data objective? Why or why not? 
 
 
 
 
 
 
 
4. Are models objective? Why or why not? 
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Appendix: Quizzes 
 
 
There are six quizzes in the course. Please arrive to class on time on quiz days. Each quiz will be 25 
minutes in duration. You may use 1 crib sheet (one side of a regular piece of 8.5” x 11” paper or smaller) 
as notes during the quiz. For some quizzes, you may use a regular calculator. Otherwise, the quizzes are 
closed to other resources. 
 
 
Quiz topic sheets can be found on Moodle. The set of material may change due to pacing of the course, 
so quiz topic sheets are not printed in the lecture notes. Material for quizzes will be drawn from the 
prelabs, labs, readings (books, articles, textbook), and lectures.  


