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Course Design for Learning 

 

 
 

 

Workload Expectations (~9 hours / week): 
• 3 hours in class (activity practice, homework work time, quizzes, exams) 

• 1.5 hours reading textbook and/or watching videos 

• 2.5 hours homework outside class 

• 0.5 hours studying, extra practice, attending office hours 

• 1 hour implementation project (amortized across semester) 

• 0.5 hours art project (amortized across semester) 
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Lecture Handouts – Please bring this booklet to class sessions and 

have it available as you watch videos 

 

Other course materials are posted to Moodle 

Including Calendar/Syllabus 

Announcements 

Homework 

Resources 

learning.up.edu
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CS 357 Homework Formatting and Submission Guidelines 
 

1. Write your solution neatly and scan/photo your document OR typeset your solution OR embed hand-

drawn or electronic images (i.e. JFLAP) into the file. 

2. Include the complete problem statement for each exercise before the solution.  

3. Label each problem with the exercise number (#1, #2, etc). 

4. List any assumptions you are making about the problem if the information is not given in the problem 

statement. 

5. When drawing state machines, be sure the arrows are clearly labeled with the corresponding symbol 

and be sure the arrow head is clearly visible. Make sure the start state is annotated with an in-arrow. 

JFLAP is helpful for drawing neat state machines – plus you can simulate strings through the machines. 

6. Include your name in the file. 

7. Acknowledge other people with whom you worked for each problem. 

8. Write “checked in class” after each solution that Tammy checked off in class. 

9. Submit homework through Moodle links, which will have the due date and time. See the syllabus for 

late days policy. 

 

Please follow these guidelines to avoid losing homework points due to formatting errors. 

 

 

Advice for Working on Homework Assignments 
 

1. Start assignments early, so you have plenty of time to ask for help, if necessary. Feel free to ask 

questions during class time and office hours. See the syllabus for office hours times. 

2. Some class time will be used to practice problems. Some class time will be used to work on homework 

problems, often times in small groups. Collaborative learning is encouraged; however, you should be 

able to independently write and explain your solutions. Copying someone else’s work without 

contributing to the solution is not okay. Working with someone else or a small study group to co-

develop solutions is okay. All group members should be able to explain the solution. 

3. Homework is your chance to practice and learn the material and it may even be somewhat fun in this 

course. Much of this course is coding via diagrams. 
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Activity 0: First Day “Quiz” 

 
This course, Theory of Computation, will introduce you to the tools and skills to characterize types of 

problems as “easy” or “hard” or “impossible to find a solution in my lifetime”. These problems are 

classified relative to the computational model (abstract machine) that is necessary to “solve” them. To 

get your brains warmed up after the summer, think about the following problems. For each, indicate 

what kind of machine would be necessary to solve that problem. 

 

The machines include (increasing by processor speed and memory size): 

• Calculator (easiest) 

• Cell phone 

• Desktop PC 

• Parallel Supercomputer (hardest) 
 

Problem 1 

Input: Airport Name 

Output: Yes if # of e’s in the name is greater than the # of a’s in the name. Otherwise, answer is no. 

 

 Example:  Input: Portland, Output: No 

   Input: Los Angeles, Output: Yes 

 

Type of machine: ______________________________ 

 

Problem 2 

Input: Two airports, pricing schemes, and schedules of all airlines 

Output: Cheapest flight option (direct flight need not be cheapest) 

 

 Example: Input: Portland, OR and Orlando, FL 

   Pricing schemes for all airlines, routes of all airlines, 

   Restrictions on pricing for all airlines 

 

   Output: $392.10 on United going through San Francisco, 

   Chicago on flight classes U and T 

 

Type of machine: _______________________________ 
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Problem 3 

Input: Two airports, distances between any two airports in the world, airline routes 

Output: Shortest flight plan in terms of distance 

 

Example:  Input: Portland, OR and Modesto, CA 

  Output: Shortest flight plan: Portland to San Francisco, San 

  Francisco to Modesto (760 miles) 

 

Type of machine: ___________________________________ 

 

Problem 4 

Input: Airport name 

Output: Yes, if it has the substring “or” in it. Otherwise, no. 

 

Example: Input: Portland Output: Yes 

  Input: Los Angeles Output: No 

 

Type of machine: ____________________________________ 

 

Problem 5 

Input: Entire airline route map 

Output: Yes, if there is a tour. Otherwise, no. A tour consists of visiting every airport and no airport is 

visited more than once. 

 

 

Type of machine: _____________________________________ 

 

 

 

 

Problem 6 

What is something you want to share about yourself with the class (hobby/skill)? ________________ 

 

In this course, we will study and classify problems according to what type of computational model is 

necessary to solve them.  

 

For these problems above, the correspondence between machines and computational models is: 

 

Calculator -> Finite State Machine (Regular Languages) 

Cell phone -> Pushdown Automata (Context-free Languages) 

Desktop computer -> Turing Machine (Decidable Languages)  
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Discrete Math and Data Structures Review 
 

This course builds from material in prerequisite courses, especially discrete math (MTH 311) and data 

structures (CS 305). Review your prior course materials and/or the resources posted to Moodle. Below 

are the essential topics that we will use from these courses. Add your own notes to the topics below. 

 

Set: unordered collection of elements 

 Symbol: Denoted by curly braces, such as {a, b, c} 

 

 

Tuple: ordered collection of elements 

 Symbol: Denoted by parentheses, such as (x, y) 

 

 

Cartesian product: cross-product to create items from multiple sets 

 Symbol: Denoted by x 

 

 

Graph: ordered collection containing a set of vertices (also called nodes) and a set of edges 

 Symbol: As a picture, vertices are circles and edges are lines/arrows between vertices 

 Can be directed or undirected 

 Commonly used algorithms on graphs: breadth-first search, depth-first search, connectivity, 

shortest path 

 

 

Tree: data structure with nodes where each node has exactly one parent and zero or more children; 

often represents hierarchy 

 Symbol: As a picture, nodes can be circles and connections to children nodes can be arrows 

 

 

Stack: linear data structure where elements are organized in a last-in-first-out (LIFO) order with two 

main operations: push and pop 

 

 

Function: mapping from domain (input set) to range (output set) 

 Symbol: Denoted by F: D -> R, where D is the domain set and R is the range set 

 

 

String: finite sequence of symbols from an alphabet (order matters) 

 Symbol: written as the array of characters from the alphabet 

 Alphabet denoted by Σ 
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Language: set of strings (not be confused with a programming language) 

 

 

Proof Techniques: direct, indirect, contradiction, induction (know these types of proof; in this course, 

we will mostly be doing direct proofs (constructing machines), proofs by contradiction, and induction 

proofs. Note that in CS, we often use strong induction rather than weak induction, since recurrences and 

recursive structures involve sub-problems of various sizes. 

 

Prerequisites are your foundation – it is important to fill in the holes prior to building new skills and 

using new knowledge in this course.  Try to make a strong “jenga” tower now. Plus, the course is like a 

“jenga” tower, where all material builds on to one structure. 

 

Put your own notes here: 
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Deterministic Finite Automata (DFA) 
 

 

DFA: State machine with states (nodes) and transitions (edges) labeled with symbols. 
 

Example DFA M1: 

 

 

 

 

 

 

 

 

 

What strings does this machine accept? 

 

 

 

 

 

 

 

 

 

 

 

 

What strings does this machine reject? 

 

 

 

 

 

What is L(M1)? (set of strings that M1 accepts) 

 

 

 

 

 

 

0 
1 

0, 1 

0 1 

Q0 Q1 Q2 
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Formal description of a DFA: 

1. Q is the set of states 
2. ∑ is the alphabet 
3. δ: Q x ∑ -> Q is the transition function 
4. q0 is the start state 
5. F (subset of Q) is the set of accepting states 

 

 

 

What is Q for M1? 

 

 

 

 

 

What is Σ for M1? 

 

 

 

 

What is δ for M1? 

 

 

 

 

What is q0 for M1? 

 

 

 

 

What is F for M1? 
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Draw a DFA that accepts the empty set (accepts no strings): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Draw a DFA that accepts just the empty string ε: 

 

 

 

 

 

 

 

 

 

 

 

Draw a DFA that accepts strings with an even number of 0’s over the alphabet {0, 1}. 

  



9 
 

DFA Example 1: w has odd number of a’s and ends with a ‘b’ 
 

Hint: Think about how to keep track of even/odd length strings.  

 

Hint: Multiple, different DFAs can be correct, just like writing programs. 

 

Try to create the DFA and then watch the video.  
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DFA Example 2: w contains substring ‘baab’ 
 

Hint: think about the path through the DFA that strings with the substring ‘baab’ would need to follow 

 

Try to create the DFA and then watch the video. 
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Activity 1: Practice with DFAs 
 

Part 1: Determining the language for a DFA 

1. Consider M1 below. 

 

M1 = ({q_1, q_2}, {0, 1}, δ, q_1, {q_2}) where 

δ: 

 0 1 

q_1 q_1 q_2 

q_2 q_1 q_2 

 

A. First, draw the machine as a state diagram here:  

 

 

 

 

 

 

 

B. What language does M1 recognize?  

 L(M1) = {      } 

 

2. Consider M2 below. 

 

M2 = 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. What is M2’s formal description as a 5-tuple? (     ) 

 

B. L(M2) = {       } 

  

 

  

Q0 

Q2 

Q4 

Q1 

Q3 

b a 

a 

a a 

a 

b 

b 

b 

b 
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3. Consider M3 below. 

 

 

 

M3: 

 

 

 

 

 

A. L(M3) = {        } 

 

 

 

Part 2: Designing DFAs 

 

1. L1 = {w | w has even length} over ∑ = {0, 1} 

 

Hint: keep track of even/odd length by going between states 

 

 

 

 

 

 

2. L2 = {w | w contains the substring 010} over ∑ = {0, 1} 

 

Hint: must see 010 consecutively 

 

 

 

 

 

 

3. L3 = {w | w starts with an ‘a’ and has at most one ‘b’} over ∑ = {a, b} 

 

 

  

   
Q0 Q1 Q2 

1 1 

0 0 

0, 1 
 



13 
 

Extra space for notes: 
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Regular Operators 

 
A U B   union   {x | x ϵ A or x ϵ B} 

A (dot) B or AB  concatenation   {xy | x ϵ A and y ϵ B} 

A*   star   {x1x2x3x4…xk | k >= 0 and xi ϵ A} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem: The class of regular languages is closed under the union operation. 

 

(Translation: If A is regular and B is regular, A U B is regular} 

 

 

Proof idea: We’ll construct M by using the following: 

 

1. Q = {(r1, r2) | r1 is in Q1 and r2 is in Q2} 
2. Σ is Σ1 U Σ2 
3. δ((r1, r2), a) = (δ1(r1, a), δ2(r2,a))       note: if the alphabet is not common for A and B, then the 

transition for any symbol not included in the machine just goes into a forever reject state 
4. q0 is (q1, q2) 
5. F = {(r1, r2) | r1 is in F1 or r2 is in F2} 
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Let’s try one: 

A = {w | w starts with an ‘a’} 

B = {w | w has an even number of ‘b’s} 

 

Draw DFA that accepts A over alphabet {a,b}: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Draw DFA that accepts B over alphabet {a,b}: 
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Using the proof idea, construct the DFA for A U B: 
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Theorem: The class of regular languages is closed under concatenation. 

 

Ideas for proving this? 

 

 

 

 

 

 

 

(detour: NFAs) 

 

 

  



18 
 

NFA – Nondeterministic Finite Automata 
 

Let’s start with an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formal Description of NFA: 5-tuple 

(Q, ∑, δ, q0, F) 

 

Only difference with DFA is 

δ: Q x ∑(with ε) -> P(Q)  power set of Q  

    (since nondeterminism lets us to be in multiple states at once) 

 

 

Model of computation for NFA: 

 

Suppose N is an NFA = (Q, ∑, δ, q0, F). 

Suppose w = w1w2w3…wn. 

 

N accepts w if there is a sequence of states r0r1r2…rn such that: 

1. r0 = q0   // starts in start state 

2. ri+1 є δ(ri, wi+1)   // next state is in set of states that follow transition(s) 

3. rn є F    // last state is an accept state 

 

(similar to DFA, but now property 2 just has to be in the set of states for the machine) 

 

 

 

 

 

0, 1 

q0 q1 q2 q3 1 0, ε 1 

0, 1 
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What are the tuple pieces for the NFA above? 

 

Q = 

 

 

∑ = 

 

 

δ = 

 

 

 

 

 

 

 

 

 

 

 

 

 

q0 = 

 

 

 

 

F =  
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What does M2 recognize?  

M2 =  

 

 

 

 

 

 

 

 

 

What does M3 recognize?  

 

 

M3 = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Q0  
Q1 

 
Q2 

0, 1 

1 0, 1 

 

  

  

 

 

ε 

0 

0 

ε 

0 

0 

0 

 

Q0 

Q1 Q2 

Q3 Q4 

Q5 
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NFA Example 1: w ends with ‘aa’ over alphabet {a, b} 

 
Hint: it can be done in 3 states 

 

Hint: use non-determinism 

 

Try it and then watch the video. 
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NFA Example 2: w contains substring ‘baab’ 
 

Hint: think about the path through the NFA for the substring 

 

Hint: is this easier than the DFA for the same language? 

 

Try it and then watch the video. 
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Activity 2: DFA and NFA Creation Practice 

 
1. A = {w | w ends in 00} over alphabet {0,1} with a 3-state NFA 

 

 

 

 

 

 

 

 

2. B = {w | w contains neither the substrings “ab” nor “ba” over {a,b}} with DFA 

 (Hint: construct for the complement of B and then reverse accept and reject states) 

 

 

 

 

 

 

 

 

 

3. C = {w | length of w is at most 4} with DFA or NFA 

 

 

 

 

 

 

 

 

4. D = {w | w is not the empty string} with DFA or NFA 
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Theorem: The class of regular languages is closed under the concatenation 

operation. 
 

 (Translation: If A is regular and B is regular, AB is regular} 

 

Proof ideas? 

 

 

 

 

 

 

Idea: Assume DFAs for A and B exist. Create NFA that nondeterministically chooses when to exit 

machine for A and start machine for B. 

 

 

 

 

 

 

 

 

Put ε-transitions from accept states for machine M_A to start state of machine M_B. Remove double 

circles from accept states for A and keep accepts states for B. 

  

 ε  
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Theorem: The class of regular languages is closed under *. 
 

Proof ideas? 

 

 

 

 

 

 

Ideas? Use nondeterminism to loop back from accept states to the start state. Also, must accept ε since 
A* is 0 or more copies and 0 copies is ε. Add new start state that accepts, and goes on ε transition to 
original start state. 
 
 
 
 
 
 
 
 
 
 
 
 

Proof 

Assume A is regular and the DFA for A is M1 = (Q1, ∑1, δ1, q01, F1}. Construct NFA N = (Q, ∑, δ, q0, F) such 

that: 

Q = Q1 U {q0}  all states in original DFA plus a new start state 

∑ = ∑1 

δ(q, a) = 

 δ1(q, a)  q є Q1 and q not in F1 

 δ1(q, a)  q є F1 and a is not ε 

 δ1(q, a) u {q01} q in F1 and a = ε 

 {q01}  q = q0 and a = ε 

 ø  q = q0 and a is not ε 

 

q0    is new start state 

F = {q0} U F1  all accept states in original DFA plus q0 

 

 

  

 

 

 

ε

ε 
 ε 
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Closure Example: If language A is regular, then A_reverse is regular. 
 

AR is the set of all strings in A that are written in reverse. 

 

Remember, to prove that a language is regular, we need to create a DFA or NFA that recognizes the 

language. For specific languages, we can just construct a specific DFA or NFA with specific states and 

transitions. However, in this proof, we need to build a DFA or NFA from the components of the DFA for 

language A. Thus, the proof will be written with the formal tuple notation. 

 

It’s easier to create the NFA for AR from the DFA for A. 

 

Draw picture of intuition here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof using tuple notation and symbols:  
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Converting NFAs to DFAs 
 

Theorem: Given NFA N, it has an equivalent DFA M. 

 

Proof: Let N = (Q, ∑, δ, q0, F) be an NFA that recognizes language A. We will build M = (Q’, ∑’, δ, q0’, and 

F’) that recognizes A. 

 

For now, let us assume N has no epsilon transitions. 

 

Q’ = P(Q) 

∑’ = ∑ 

δ’(R, a) = Union over r in R (δ(r, a))  // delta takes set of states x character to set of states 

q0’ = {q0} 

F’ = {R in Q’ | set R contains at least one accept state of F} 

 

 

 

OK, this works for NFAs that do not contain epsilon transitions. Now, consider a general NFA that can 

contain epsilon transitions – how should we modify this? 

 

E(R) is the set of states that can be reached from R following epsilon transitions 

 

We need to modify delta and the start state to include these: 

 

δ’(R, a) = {q in Q | q is in E(δ(r, a)) for some r in R}  

q0’ = E({q0})  // states reachable from q0 on epsilon (ε) transitions 
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Let’s try an example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q = {ø, {1}, {2}, {1, 2}} 

∑ = {a, b} 

q0 = {1} 

F = {{1}, {1, 2}} 

δ: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 

2 

a 

a, b 

b 

ø {1} 

{2} {1, 2} 

a, b 

b 

b 
a a 

a, b 
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Example: Convert an NFA with epsilon transitions to an equivalent DFA: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

a 

1 3 

2 

a, b 

a 

ε 

b 
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Example: Convert the following NFA to a DFA: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

0, 1 

1 3 

2 

0, ε 

1 
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Regular Expressions 
 

Definition of regular expression: 

1. a, a є ∑ 
2. ε 
3. ø 
4. (R1 U R2) where R1 and R2 are regular expressions 
5. (R1 (dot) R2) 
6. (R1*) 

 

Shorthand: 

∑ all strings of length 1 over ∑ 

∑* all strings over ∑ 

∑*1 all strings that end in 1 

0∑* all strings that start with 0 

R+ means 1 or more concatenations of strings in R 

Rk   means k concatenations of R 

 

Precedence of operators: *, dot, U 

 

 

Examples 

∑*1∑*   {w | w contains at least one 1} 

0*10*   {w | w contains exactly one 1} 

1*(01+)*  {w | every 0 in w is followed by a 1} 

0∑*0 U 1∑*1 U 0 U 1 {w | w starts and ends with same symbol} 
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Examples for Creating Regular Expressions 
 

Try creating regular expressions for the following languages over the alphabet {0, 1} and then watch the 

video. 

 

{w | w starts with a ‘0’ and ends with a ‘1’} 

 

 

 

 

 

{w | w contains at least three 1’s} 

 

 

 

 

 

{w | w contains exactly three 1’s} 

 

 

 

 

 

{w | every odd position of w is 1, where the first character is in the odd position} 
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 Activity 3: Practice with regular expressions 
 

Part 1 

Practice: What languages do these regular expressions generate? 

 

1. 01 U 10   
 

2. (∑∑)*   
 

3. (0 U ε)(1 U ε)  
 

4. 1*ø   
 

5. ø*   
 

Part 2 

Practice: For each language below, give 2 strings in and 2 strings not in the language 

 

1. a*b*   in:    not in: 
 

2. aba U bab  in:    not in: 
 

3. ∑*a∑*b∑*a∑*  in:    not in: 
 

4. (aaa)*   in:    not in: 
 

5. a(ba)*b   in:    not in: 
 

6. a+b*a+   in:    not in: 
 

Part 3 

Find the regular expression for the following languages over {0,1}*: 

 

1. {w | w has the substring 010} 
 

2. {w | every odd position of w is 0, where positions are numbered 1, 2, 3, 4, etc.} 
 

3. {w | w has odd length} 
 

4. {w | w begins with 0 and ends with 01} 
 

5. {w | w does not contain the substring 010}   // note this one is hard 
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Space for notes: 
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Theorem: A language is regular if and only if some regular expression describes 

it. 
 

Lemma A: If a language is described by a regular expression, then it is regular. 

Lemma B: If a language is regular, then it is described by a regular expression. 

 

How to show these? 

A: Start with regular expression, create NFA (which we already showed can be converted to DFA) 

B: Start with DFA, create regular expression 

 

 

Let’s convert from a regular expression to an NFA first: 

 

If we have a regular expression, how should we build an NFA to represent it? 

 

Proof: Let R be a regular expression. For any R, we will show how to generate an equivalent NFA. 

Consider the 6 cases: 

1. if R = a for some a in ∑, then the following NFA recognizes A 
 

 

 

 

 

 

 

 

2. If R = ε, then L(R) = {ε} 
 

 

 

 

 

 

 

 

3. If R = ø, then L(R) = ø 
 

 

 

 

 

 

 
q0 q1 

a 

q0 

q0 
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4. R = R1 U R2  (use construction that we did in proof for U) 
5. R = R1 (dot) R2  (use construction that we did in proof for concatenation) 
6. R = R1*   (use construction that we did in proof for *) 

 

Thus, for every possible regular expression (and combinations of regular expressions), we can generate 

an NFA. 

 

 

Example of converting regular expression to NFA: 
(ab U b)* 

 

Let’s convert this to an NFA: 

 

 

a   

 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

ab 

 

 

 

 

 

 

 

 
  

a 

  
b 

  
a 

 
 b ε 
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ab U b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ab U b)* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε 

 

  
a 

 
 b ε 

 

 

 
 

b 

ε 

ε 

  
a 

 
 b ε 

 

 
 

b 

ε 

 

ε 

ε 

ε 
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Example to convert regex to NFA: a(aab)* U b 

 
Try to convert a(aab)* U b to an equivalent NFA using the technique. 

 

Hint: start with the smallest parts, the NFA for ‘a’ and the NFA for ‘b’. Create NFA for ‘ab’. Then create 

the NFA for abb. 

 

Try it and then watch the video. 
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Activity 4: Converting regex to NFA 

 
1: Create the NFA for the following regex: 

 a* U (ab)*b 
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Activity 4 continued 
 

2: Create the NFA for the following regex: 

(a U b)a*b* 
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Converting DFA to a regular expression 
 

What we’ll do is collapse the DFA by following two rules: 

1. If there are multiple edges from state q to state r, then create a union of the edge symbols 
 

 

 

 

 

 

  becomes 

 

 
 

 

 

 

 

2. If there is a state q -> r -> s where r has a loop, we’ll replace it by q -> s and replace edge with 
 

 

 

 

 

 

 

 

 

becomes 

 
 

 

 

 

 

 

 

 

 

q r 

a 

b 

q r a U b 

q r s 

b 

a c 

q s ab*c 
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Example of converting DFA to regex: 
 

Assume DFA D is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We add a new start state and new accept state to D to create a generalized NFA called G: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we start ripping out states. Let’s rip q1: 

 

 

 

 

 

 

 

 
q0 q1 

q2 

0 

0 

0 
1 

1 

1 

q2 

0 

0 

1 

1 

1 

q0 q1 

0 

q’ 
ε 

f’ 

ε 

ε 
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Now, let’s rip out q2: 

 

 

 

 

 

 

 

 

 

 

 

 

Now, let’s rip out q0: 

 

 

 

 

 

 

 

 

q2 

1 U 01 

1 U 00 

q0 

0 

q’ 
ε 

f’ 

0 U ε 

01 

00 

q’ q0  

f’ 

ε 

00 U (1 U 01)(01)*(1 U 00) 

0 U (1 U 01)(01)*(0 U ε) 

q’ 

f’ 

(00 U (1 U 01)(01)*(1 U 00))* (0 U (1 U 01)(01)*(0 U ε) 
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DFA to Regex Example: w does not contain the substring 010 
 

Hint: First, create a DFA for strings that contain 010. Then, create the DFA for the complement of that 

language. 

 

Try doing this and then watch the video. 

 

Note that there should be a union epsilon at the end of the final regex. The video was cut short. 
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Activity 5: Practice converting a NFA->DFA and then DFA->regex 
 

 

 

 

 

 

 

 

1. First, convert NFA above to an equivalent DFA: 

 

 

 

 

 

 

 

 

2. Then, create the GNFA (new start state and new single accept state). 

 

 

 

 

 

 

 

 

3. Then, rip a state: 

 

 

 

 

 

 

 

4. Rip another state: 

 

 

  

 q0 q1 

a 
b 

a 
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Summary (Regular Languages) 
 

A language is regular if a DFA recognizes it (definition). 

 

A language is regular if and only if an NFA recognizes it. 

 DFA is an NFA, NFA -> DFA 

 

A language is regular if and only if some regular expression describes it. 

 DFA -> regex, regex -> NFA 

 

The class of regular languages is closed under U (union), dot (concatenation), and *. 

 

 

   DFA 

 

    convert to GNFA, rip states to create regex 

create states 

representing 

subsets of states 

 

 

 

 NFA    Regex 

 

  build up of 6 regex components 

 

 

 

 

   DFA 

 

 

 by defn    did not show directly, but can convert to regex to NFA,  

     NFA -> DFA 

 

 

 

 NFA    Regex 

 

  did not show directly, but can convert to DFA and then to Regex 
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CS357 Review Sheet – Midterm Exam #1 
 

You may use 1 crib sheet as notes during the exam. All other resources are off limits – you are on your 

honor to follow these exam rules. 

 

Content: Exam 1 will cover sections 0.1 through 1.3 of the textbook. Material will be drawn from 

homework assignments, lectures, and the textbook. 

 

Procedure: Please arrive to class on time. You may use one sheet of 8.5” x 11” paper (both sides) during 

the exam. Other than your sheet of notes, the exam is closed-book, closed-calculator, closed-computer 

other than the moodle submission links, and closed-notes. All computations will be simple enough for 

you to do by hand. 

 

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed 

below and there may be topics that we covered in class that are not explicitly listed. 

• Discrete Math Review 
o Sets 
o Sequences (Tuples) 
o Functions and Relations 
o Graphs 
o Strings and Languages 
o Boolean Logic 
o Proofs 

▪ Direct 
▪ Indirect 
▪ Contradiction 
▪ Induction 
▪ Construction 

• Regular Languages (those that can be recognized by DFAs, NFAs, or written as regular 
expressions) 

• DFAs 
o Given a language, construct the DFA 
o Given a DFA, state the language it recognizes 
o Formal definition as a tuple 

• Union, Concatenation, * 
o Closure of regular languages under U, concatenation, and * (know the proofs) 

• Closure of regular languages under other operations, such as reverse and perfect shuffle 

• NFAs 
o Given a language, construct the NFA 
o Given an NFA, state the language it recognizes 
o Converting NFAs to DFAs 
o Formal definition as a tuple 

• Regular Expressions 
o Given a regular expression, state its language 
o Given a language, create a regular expression  
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o Converting regular expressions to NFAs 
o Converting DFAs to regular expressions 
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Question to ponder: Can you create a DFA or NFA for the language L = {0n1n | n 

>= 0}? 

 

 

What would you need to do this? 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

How would we show that a language is non-regular?  

 Regular 

Non-Regular 
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Pumping Lemma for Regular Languages 
 

Pumping Lemma for Regular Languages: 

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of 

length at least p, then s may be divided into 3 pieces s = xyz such that: 

1. For each i ≥ 0, xyiz є A 

2. |y| > 0 

3. |xy| ≤ p 

 

In other words, arbitrary copies of y concatenated in the middle results in strings that are still in the 

language A. 

 

 

 

 

 

 

Formal proof 

Let A be a regular language that is recognized by DFA M = (Q, Σ, δ, q0, F). Let p = |Q|.  

Let s = s1s2s3…sn be a string that is in A where n >= p. Let r1, r2, …rn, rn+1 be the set of states that are 

entered when executing M on s. Because n >= p, then (n+1) > p, so there must be some state that is 

repeated in r1, r2, …rn+1. Let rj be the first such repeated state in the list and let rk be the second instance 

of the repeated state in the list. 

 

Let x = s1 … sj-1 

Let y = sj … sk-1 

Let z = sk …sn 

 

[condition 1] M must accept xyiz for i ≥ 0 since s is accepted by M and the y part can be repeated 0 or 

more times.  

 

[condition 2] The string y has length > 0 since rj and rk appear as separate entries in the sequence of 

states entered. Thus, there is at least one transition from rj to rk. 

 

[condition 3] The latest the duplicate states could appear is rn and rn+1, so |xy| ≤ n , so |xy| ≤ p. 
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Activity 6: Find the minimum pumping lengths 
 

Examples: 

0001*  // 4 (000 is in but cannot be pumped down, 0001 can be pumped down) 

0*1*  // 1 (0 can be pumped down, 1 can be pumped down) 

0*1+0+1* U 10*1 //3 (11 cannot be pumped, but strings of length 3 can be pumped by either part) 

(01)*11  // 3 (no strings of length 3, 0111 can be pumped down, length 3 is “vacuously true” 

11(01)*  // 4 (no strings of length 3, 1101 can be pumped down, pumped string must come in 

  // first p characters 

 

What are the minimum pumping lengths of the following languages?  

Hint 1: think about the shortest string(s) in the language. They cannot be pumped down.  

Hint 2: if there are strings of length 4 that can be pumped up and down, there are no strings of length 3 

in the language, and there are strings of length 2 that cannot be pumped down, then the minimum 

pumping length is 3 due to the vacuously true part of the pumping lemma. 

Hint 3: the pumped out or pumped in substring y must come in the first p characters where p is the 

minimum pumping length 

 

1. aa*b U abab*b       MPL = ______ 

 

 

2. ba(ab)* U b        MPL = ______ 

 

 

3. bb(aaa)*        MPL = ______ 

 

 

4. ab U ba        MPL = ______ 

 

 

5. bb* U aaa*        MPL = ______ 

 

 

6. babba*        MPL = ______ 

 

 

7. (aaa)*bb        MPL = ______  
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Using the pumping lemma to prove a language is NOT regular: 
 

Assume you are given a language A. 

1. Assume A is regular. Thus, the pumping lemma is true for some pumping length p. 

2. Choose a string s at least length p that is in A. 

3. For all possible decompositions of s into xyz such that y has at least one character and |xy| <= p, 

show that there is some i for which xyiz is not in A. Because the string cannot be “pumped”, we 

have a contradiction. A must not be regular. 

 

Game: 

1. Adversary chooses p. 

2. You choose a specific string s where |s| >= p. 

3. The adversary chooses the decomposition of s into xyz, subject to |y| > 0 and |xy| <= p. 

4. You choose i in such a way that xyiz is not in the language. In many proofs, it is common to 

choose i to be 0 (i.e. remove substring y) or choose i to be 2 (i.e. consider string xyyz). 
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Example of proving a language is not regular 

 
(proof by contradiction) 

 

Show that the language L1=  {0n1n |n >= 0} is not regular. 

 

Assume L1 is regular. Then, the pumping lemma holds with pumping length p. Choose s = 0p1p. Using the 

pumping lemma, s can be split into three parts s = xyz such that |xy| <= p and |y| > 0. The following 

cases for the decomposition are as follows: 

 

Case 1: s = xyz where y contains all 0’s. Then, y = 0k where 1 <=k <= p. Consider xy2z. Because y contains 

at least one zero, the string xy2z must have at least N+1 zeros before the N ones. Thus, xy2z is not in L1. 

 

Because |xy| <= p, there are no more cases to consider. Because the string 0p1p cannot be pumped, the 

pumping lemma does not hold. We have a contradiction. So, L1 is not regular. 

 

      

  



54 
 

Practice with scaffolding 
Show L2 = { wwR | w is in {0,1}*} is not regular. 

 

Assume L2 is regular. Then, the pumping lemma holds with pumping length p. Choose s = ___________. 

Using the pumping lemma, s can be split into three parts s = xyz such that |xy| <= p and |y| > 0. The 

following cases for the decomposition are as follows: 

 

Case 1: s = xyz where y contains _______. Consider xykz where k = _____. Because y contains 

____________________, the string xykz must ____________________________. Thus, xykz is not in L2. 

 

Case 2: (if needed) 

 

 

 

 

Case 3: (if needed) 

 

Because the string s cannot be pumped for any choice of y, the pumping lemma does not hold. We have 

a contradiction. So, L2 is not regular. 
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Activity 7: Proving Non-regular languages 
 

Show each of the following languages are NOT regular by using the pumping lemma. 

 

L3 = {w | w has an equal number of 0’s and 1’s in any order over {0,1}*} 

 

s =  

 

Cases: 
 

 

 

 

 

 

 

 

 

L4 = {ww | w  is over {0,1}*} 

 

s =  

 

Cases:  

 

 

 

 

 

 

 

 

L5 = { 0i1j | i > j} 

 
s = 

 

Cases:  
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Space for notes:  



57 
 

Context Free Languages 
 

Generated by a context free grammar (CFG) 

 Often used to express programming languages and natural languages 

 Java’s grammar is here: https://docs.oracle.com/javase/specs/jls/se18/html/jls-19.html 

 

Example of simple grammar: 
 

G1: 

A  -> 0A1 

A -> B 

B -> # 

 

Grammar components:  

Variables: A, B   V = {A, B} 

Symbols/Terminals: 0, 1, # Σ = {0, 1, #} 

A is the start variable  S = A 

 

 

Example: 

S = 00#11 is in L(G1) 

 

How is S derived? 

A -> 0A1 

➔ 00A11 

➔ 00B11 

➔ 00#11 

 

Another view as a parse tree 

 

          A 

 

    

         A 

 

         B 

 

 

            0             0         #          1           1 

 

 

https://docs.oracle.com/javase/specs/jls/se18/html/jls-19.html
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1. What is L(G1)? 

 

 

Formal definition of a CFG: (V, Σ, R, S) 

1. V is the set of variables 

2. Σ is the set of terminals (alphabet) 

3. R is the set of rules from variables to strings of variables and terminals 

4. S є V is the start variable 

 

 

 

 

 

 

 

 
G2 = ({S}, {a, b}, R, S) where R is S -> aSb | SS | ε 

 
2. What strings does G2 generate? 

 

 

 

 

 

3. What is L(G2)? 
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G3 = (V, ∑, R, <expr>) 

 

V = {<expr>, <term>, <factor>} 

∑ = {a, +, x, (, ) } 

R: 

<expr> → <expr> + <term> | <term> 

<term> → <term> x <factor> | <factor> 

<factor> → (<expr>) | a 

 
4. What strings are generated? 

 

 

 

 

 

 

 

Definition An ambiguous grammar has two or more parse trees for at least one string in L(G). 

 

Example: 

G4: 

E -> E + E | E x E | (E) | a 

 

 

 

 

 

 

 

 

 

5. Find a string that can be generated in two or more ways with G4. 
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Grammar Example 1: w has middle symbol 1 

 
Try creating the grammar for this language and then watch the video. 

 

Hint: think about how to elongate the string to keep the 1 in the middle. 

 

Hint: think recursively. What is the base case (shortest string)? What are the recursive cases?  
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Grammar Example 2: w equals w reverse 
 

Try to create the grammar for this language and then watch the video. 

 

Hint: it needs to work for even-length and odd-length strings. 

 

Hint: think about the base cases (shortest strings) 

 

Hint: think about the recursive cases (how to make longer strings from a given string x in the language) 
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Theorem: If language A is regular, A is a context free language. (The regular 

circle is embedded in the CFL circle.) 
 

Proof idea: Need to convert DFA to a CFG. 

 

Each state becomes a variable. 

If d(qi, a) = qj 

 becomes rule Ri -> aRj 

For accept states: 

 Ri -> ε 

If q0 is start state, then: 

 R0 is start rule 

 

example: 

 

DFA M = ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q0, q2}) 

δ: 

 

0 1 

q0 q1 q2 

q1 q0 q3 

q2 q2 q2 

q3 q3 q3 

 

 

Grammar is: 

 

R0 -> 0R1 | 1R2 | ε 

R1 -> 1R3 | 0R0 

R2 -> 0R2 | 1R2 | ε 

R3 -> 0R3 | 1R3 
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Activity 8: Construct grammars for languages below  

(note: Σ = {0,1} for all languages below) 
 

A = {0n1n | n >= 0} U {1n0n | n >= 0} 

 

 

 

 

 

 

 

 
B = {w | w starts and ends with the same symbol} // note this one is actually regular 

 

 

 

 

 

 

 

 
C = {w | length of w is odd} // note this one is actually regular 

 

 

 

 

 

 
D = {w | length of w is odd and middle symbol is 0} 
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Converting to CNF (Chomsky Normal Form) 
 

In CNF, all rules have the form: 

A -> BC  The rule S -> ε is permitted, no other rule has ε 

A -> a 

 

Idea for converting a grammar into CNF: 

 

1. Make a new start rule S0 -> S 
2. For any rule A-> є, replace occurrences of A on the righthand side of rules with є 
3. Remove rules A -> B, B-> a and replace with A->a and remove rules A -> A 
4. Remove rules that look like A->abcd with rules A->aA1, A1->bA2, A2->cA3, A3->d 

or rules that look like A->ABCD with rules A->AA1, A1->BA2, A2->CD 

5. Remove rules that look like A->aB with rules A->XB and X->a 
 

Example: 

 

G: S -> ASA | aB 

 A -> B | S 

 B -> b | ε 

 

1. Make new start rule 
 

S0 -> S 

S -> ASA | aB 

 A -> B | S 

 B -> b | ε 

 

2. Remove B->є rule 
 

S0 -> S 

S -> ASA | aB | a 

A -> B | S | ε 

B -> b 

 

Remove A->є rule 

 

S0 -> S 

S -> ASA | aB | a | SA | AS | S 

A -> B | S 

B -> b 
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3. Remove S->S 
 

S0 -> S 

S -> ASA | aB | a | SA | AS 

A -> B | S 

B -> b 

 

Remove S0 -> S 

 

S0 -> ASA | aB | a | SA | AS 

S -> ASA | aB | a | SA | AS 

A -> B | S 

B -> b 

 

Remove A->B 

 

S0 -> ASA | aB | a | SA | AS 

S -> ASA | aB | a | SA | AS 

A -> b | S 

B -> b 

 

Remove A->S 

 

S0 -> ASA | aB | a | SA | AS 

S -> ASA | aB | a | SA | AS 

A -> b | ASA | aB | a | SA | AS 

B -> b 

 

4. Remove rules that go to three or more terms 
 

S0 -> AA1 | aB | a | SA | AS 

S -> AA1 | aB | a | SA | AS 

A -> b | AA1 | aB | a | SA | AS 

B -> b 

A1-> SA 

 

5. Remove rules A->aB 
 

S0 -> AA1 | UB | a | SA | AS 

S -> AA1 | UB | a | SA | AS 

A -> b | AA1 | UB | a | SA | AS 

B -> b 
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A1-> SA 

U -> a 

 

The resulting grammar is now in CNF (all rules look like A->BC or A->a) 

 

 

Practice: Convert the following grammar to CNF: 
 

G: S -> A | ε 

 A -> 01 | 0A1 
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Pushdown Automata (PDA) 
 

It’s like an NFA with a stack. 

 

Read input, go through states (but machine also can push/pop symbols from a stack). 

 

Push – write symbol 

Pop – read symbol and remove from stack 

 

Example: PDA for {0n1n | n >= 0) 

Idea: use stack to store 0’s it has seen. When you start reading 1’s, start popping 0’s off the stack. If 

stack is empty when entire string is read, then we accept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formal Definition: 

M = (Q, Σ, Γ, δ, q0, F) 

 

Q = set of states 

Σ = input alphabet 

Γ = stack alphabet 

δ: Q x Σε x Γε -> P(Q x Γε) // transition takes state, input, and stack -> set of states 

// (can be in several states after transition 

q0 is start state 

F is set of accept states 

 

 

 

 

 

 

  

   

 Q0 
Q1 

Q2 Q3 

ε, ε-> $ 

1, 0-> ε 

0, ε-> 0 

1, 0-> ε 

ε, $-> ε 
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Definition of computation: 

1. M is a PDA. M starts in q0 with an empty stack 

2. M follows transitions given input symbol, state and stack symbol 

3. If M can finish reading the input string and end in an accept state, the string is accepted. 

 

 

Let’s see what happens when the above PDA runs on w = 000111. 

 

 

 

What does delta transition table look like? 

  



69 
 

Another example of a PDA: 

{wwR | w є {0,1}*} 

 

 Idea: push symbols of input, nondeterministically guess middle, start popping read symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Try operating on 110011. 

 

 

 

More on the stack part of the transition: 

ε-> 0 Push 0 

0-> ε Pop 0 (means stack must have 0 on top, if it does not, cannot follow this transition) 

 

ε->ε Keep stack the same 

0->1 Replace 0 with 1 (really just shorthand for pop 0, push 1) 

0->01 Read 0 on top, push 1 

0->00 Read 0 on top, push 0 (really just shorthand for pop 0, push 0, push 0) 

Γ-> ε Pop any symbol from stack 

  

 

   

Q0 
Q1 

Q2 Q3 

ε, ε-> ε 

0, 0-> ε 

1, 1 -> ε 
ε, $-> ε 

  
ε, ε -> $ 0, ε-> 0 

1, ε-> 1 
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PDA Example 1: w has middle symbol 1 
 

Try to create the PDA for this language and then watch the video. 

 

Hint: our memory in a PDA is a stack. How can you use the stack to get to the middle of the string? 
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PDA Example 2: w equals w reverse 
 

Try to create the PDA for this language and then watch the video. 

 

Hint: our memory in a PDA is a stack. How can you use the stack to ensure the string is a palindrome? 

  



72 
 

Activity 9: Construct PDAs 
 

Create PDAs for the following languages: 

 

A = {w | w has more a’s than b’s over {a,b}*} 

Hint: Use the stack to show difference of # a’s versus b’s or difference of # b’s versus a’s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B = {w#x | wR is a substring of x, where x and w are over {0,1}*} 

Hint: Use the stack to push w; ND pop from stack to guess substring portion  
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Converting CFG to PDA (flower power) 
 

General idea for PDA: 

1. Place $ on stack, Place S on stack 

2. While(true): 

a. If top of stack is variable A, nondeterministically select a rule for A and substitute 

b. If top of stack is a and input is a, keep processing stack by reading a from string and 

popping a from stack. Otherwise, reject this branch. 

c. If top of stack is $, accept. 

 

 

Assume A is context free given by grammar G = (V, ∑, R, S). Construct PDA M = (Q, ∑’, Γ, δ, q0, F) as 

follows: 

 

Q = {Qstart, Q1, Qloop, Qaccept} 

∑’ = ∑ 

Γ = ∑ U {$} U V 

δ (see below) 

q0 = q_start 

F = {q_accept} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Qstart 

 

 Qloop 

 
Qaccept 

ε, ε -> $ 

 

ε, $ -> ε 

ε, A -> w  // for all rules (reverse order on right-hand side w) 

a, a -> ε   // for all symbols in ∑ 

 

ε, ε -> S 

Q1 
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Example to convert grammar to PDA 

 

S -> aSb | ST | Tb 

T -> bTa | a | ε 

 

There are six rules, so we will have six petals (some shared) around Qloop. The alphabet (terminals) are 

{a, b}, so we will have a rule that reads the symbol and pops the symbol in the alphabet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Qstart 

 

 Qloop 

 
Qaccept 

ε, ε -> $ 

 

ε, $ -> ε 

 

ε, ε -> S 

Q1 

a, a -> ε 

b, b -> ε 

ε, T-> a 

ε, T -> ε 

ε, S -> b 

 

ε, ε -> S 

 

ε, ε -> a 

ε, S -> T 

 
ε, ε -> S 

 

ε, S -> b 

ε, ε -> T 

 

 

ε, T ->a 

ε, ε -> T 

ε, ε -> b 
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Let’s see how this PDA accepts aabb: 

 

   a  T a 

   S S b b b  

  S b b b b b b  

Stack:     $ $ $ $ $ $ $ $  empty 

 

    read a   read a read b read b 
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CFG->PDA Example: Converting grammar to equivalent PDA 

 
CFG: 

 

A -> aAb | Bb | ε 

B -> aB | a 

 

Create flower diagram for equivalent PDA: 

 Remember: the rules need to be pushed to the stack from right to left. 
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Activity 10: Practice converting grammar to PDA 
 

Use the conversion technique (flower power) to convert the following grammar to an equivalent PDA. 

 

S -> aaSC | Cab | ε 

C -> aCb | Da 

D -> bD | b 
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Converting PDAs to CFGs 
 

Theorem Assume A is L(M) where M is a PDA. Then, there is a context free grammar G that generates A. 

Lemma: If a PDA recognizes some language, then it is context free. 

 

Idea: 

We’ll transform the PDA: 

1. It has one accept state qf 
2. It empties its stack before accepting 
3. Each transition either pops or pushes a symbol (no places where the stack stays the same) 

 

To convert to grammar: 

1. Variables Aij will represent paths from state i to state j 
2. Apq -> aArsb if p goes to r while reading a and pushing t AND r goes to s while reading b and 

popping t       
OR Apq -> aArsb if p goes to r while reading a and popping t AND r goes to s while reading b and 
pushing t   // legal moves through PDA that preserve stack 

 

 

 

 

 
 

 

 

 

3. Start variable represents going from start to qf. // must get all the way from start to accept 
4. Apq -> AprArq for all p, q, r as states in PDA // can replace path with two adjoining paths in 

PDA 
5. App -> ε for all p in the states in PDA  // can stay in state without reading anything 

 

Example 

PDA for 0n1n 

 

 

 

 

 

 

 

 

 

 

ε, ε-> $ 0, ε-> 0 
 
 

2 
1  

1, 0-> ε 

1, 0-> ε 4 3    
ε, $-> ε 

    

a, ε -> t 
b, t-> ε 

p 
r s q 

    

a, t -> ε  
ε -> t 

p 
r s q 
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Transform PDA: 

1. One accept state. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Empties stack before accepting (already done) 
 

3. All transitions either pop or push a symbol: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ok –now we’re ready to make variables for the grammar. 

 

 

1) Identify all transitions where same symbol is (pushed and popped) or (popped and pushed): 

  

   

1 
2 

3 4 

ε, ε-> $ 

1, 0-> ε 

0, ε-> 0 

1, 0-> ε 

ε, $-> ε 

ε, ε-> ε 

  

 

  

1 
2 

3 

4 

ε, ε-> $ 

1, 0-> ε 

0, ε-> 0 

1, 0-> ε 

ε, $-> ε 

ε, ε-> $ 

 

ε, $-> ε 

5 
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Note: we will not worry about the pop/push pairs for this PDA, since there is no path that gets from the 

start to the accept state with a pop/push in that order.  

push  pop 

$ 1 -> 2  5 -> 4 

$ 1 -> 2  3 -> 4 

$ 1 -> 5  5 -> 4 

$ 1 -> 5  3 -> 4 

0 2 -> 2  2 -> 3 

0 2 -> 2  3 -> 3 

 

Rules  from push/pop pairs and pop/push pairs are: 

A14 -> εA25ε | εA23ε | εA55ε | εA53ε 

A23 -> 0A221 | 0A231 

 

2) Add rules App -> ε 
 

A11 -> ε 

A22 -> ε 

A33 -> ε 

A44 -> ε 

A55 -> ε 

 

3) Add rules Aik -> AijAjk  for all i, j, k (most will be unreachable) 
 

A15 -> A11A15 | A12A25 | A13A35 | A14A45 | A15A55 

A25 -> … 

A35 -> … 

 

(125 rules) 

 

4) Start rule is A14 
 

Overall grammar:   // keep the part 3 rules that appear on right-hand side 

 

A14 -> εA25ε| εA23ε | εA55ε | εA53ε 

A23 -> 0A221 | 0A231 

A22 -> ε 

A55 -> ε 

A25 -> A21A15 | A22A25 | A23A35 | A24A45 | A25A55 

A23 -> A21A13 | A22A23 | A23A33 | A24A43 | A25A53 

A55 -> A51A15 | A52A25 | A53A35 | A54A45 | A55A55 

A53 -> A51A13 | A52A23 | A53A33 | A54A43 | A55A53 
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A22 -> A21A12 | A22A22 | A23A32 | A24A42 | A25A52 

 

 

Can delete some of these part 3 rules to tighten up grammar (the bottom five don’t bottom out to 

terminals, so they can be removed). The first and last options of the top rule can be pruned since these 

do not lead to any strings. 

 

A14 -> εA23ε | εA55ε 

A23 -> 0A221 | 0A231 

A22 -> ε 

A55 -> ε 

 

Cleaning up further through substitutions: 

A14 -> A23 | ε 

A23 -> 01 | 0A231 

 

This looks a lot like the grammar we originally created for this language. 

 

If you want to be safe, do not remove any rules to clean up the grammar. In this course, it’s ok if you 

keep unreachable rules. Better to be “safe” than “sorry” by accidentally removing rules. You can write 

the complete grammar as follows: 

 

A14 -> εA23ε | εA55ε 

A23 -> 0A221 | 0A231 

Aii -> ε   for 1 ≤ i ≤ 5 

Aik -> AijAjk  for 1 ≤ i ≤ 5, 1 ≤ j ≤ 5, 1 ≤ k ≤ 5 
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PDA to CFG Example 2 
 

Here is another example of the PDA to CFG conversion. Assume the language is the set of strings with 

middle three symbols equal to aba. 

PDA: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Transform PDA, so that it: 

1) Has one accept state 

2) Empties stack before accepting 

3) Each transition pushes or pops on symbol 

 

With the PDA above, 1 and 2 are already done. The PDA below adds states and transitions, so that every 

transition pushes or pops one symbol. 

 

PDA: 

  

  

   

1 
2 

3 

4 

ε, ε-> $ 

a, ε-> ε 

a, ε-> x 

b, ε-> x 

b, ε-> ε 

ε, $-> ε 

 

 

a, ε-> ε 

a, x-> ε 

b, x-> ε 5 
6 
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Ok –now we’re ready to make variables. 

 

5) Identify all transitions where same symbol is pushed and popped or popped and pushed: 
 

push  pop 

$ 1 -> 2  5 -> 6  

x 2 -> 2  5 -> 5 

1 2 -> 7  7 -> 3 

2 3 -> 8  8 -> 4 

3 4 –> 9  9 -> 5 

 

Note: technically, you would also want to consider pairs that popped and then pushed the same symbol, 

but looking at the PDA as a graph, all symbols are pushed before they are popped, so you may ignore 

the pop/push pairs on this example. 

 

1) Create rules for each of these pairs: 

 

A16 -> εA25ε 

A25 -> aA25a | aA25b | bA25a | bA25b 

A23 -> aA77 

A34 -> bA88 

A45 -> aA99 

  

   

1 
2 

3 

4 

ε, ε-> $ 

a, ε-> 1 

a, ε-> x 

b, ε-> x 

b, ε-> 2 

ε, $-> ε 

 

 

a, ε-> 3 

a, x-> ε 

b, x-> ε 
5 6 

 

 

 

ε, 1-> ε 

ε, 2-> ε 

ε, 3-> ε 

7 

8 

9 
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Note that A16 is the start variable, since that represents the path from the start state to the final accept 

state. 

 

2) Now,  we add rules for each state going to ε. 

A11 -> ε 

A22 -> ε 

A33 -> ε 

A44 -> ε 

A55 -> ε 

A66 -> ε 

A77 -> ε 

A88 -> ε 

A99 -> ε 

 

3) Now, we add rules for paths through the PDA but most of these are not necessary: 

 

A16 -> A11A16 | A12A26 | A13A36 | A14A46 | A15A56 |A16A66 | A17A76 | A18A86 | A19A96 

A26 -> … 

 

How do we know which rules are necessary? Look at the PDA as a graph. Include rules that are actual 

paths through the PDA and for which there are variables on the RHS of the rules created from the 

push/pop pairs.   

 

A25 is the only variable on the right-hand side of a rule that is not Ajj. So, we need to keep the paths for 

A25: 

 

A25 -> A22A25 | A23A35 | A24A45 | A25A55 | A21A15 | A26A65 | A27A75 | A28A85 | A29A95 

 

Of these, we only need to keep the ones for which there is a path in the PDA.  

 

There is no path through the PDA for these rules: 

A21A15 

A26A65 

 

A25 -> A22A25 is simply A25 -> A25, so it can be removed. The same is true for A25 -> A25A55. 

 

We can trim this rule to: 

A25 -> A23A35 | A24A45 | A27A75 | A28A85 | A29A95 

 

Then, we can see which of these rules will actually “bottom out” to actual terminals, given the other 

rules in the grammar. Of these, the first two will bottom out, so we just keep those. 
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Now, we have the following rules on the RHS that need to be expanded: A23   A35  A24   A45 

A23 -> A22A23 | A23A33 | A24A43 | A25A53 | A21A13 | A26A63 | A27A73 | A28A83 | A29A93 

A35 -> A32A25 | A33A35 | A34A45 | A35A55 | A31A15 | A36A65 | A37A75 | A38A85 | A39A95 

A24 -> A22A24 | A23A34 | A24A44 | A25A54 | A21A14 | A26A64 | A27A74 | A28A84 | A29A94 

A45 -> A42A25 | A43A35 | A44A45 | A45A55 | A41A15 | A46A65 | A47A75 | A48A85 | A49A95 

 

We can remove rules that do not represent an actual path in the PDA: 

A23 -> A22A23 | A23A33 | A27A73  

A35 -> A33A35 | A34A45 | A35A55 | A38A85 | A39A95 

A24 -> A22A24 | A23A34 | A24A44 | A27A74 | A28A84  

A45 -> A44A45 | A45A55 | A49A95 

 

Now, we can remove RHS rules that will never bottom out using the rest of the rules in the grammar. 

A23 -> A22A23 | A23A33  // this is simply A23 -> A23 for both, so can be removed 

A35 -> A34A45  

A24 -> A23A34  

A45 -> A44A45 | A45A55  // this is simply A45 -> A45 for both, so can be removed 

 

 

The final grammar is: 

A16 -> εA25ε 

A25 -> aA25a | aA25b | bA25a | bA25b | A23A35 | A24A45  

A24 -> A23A34  

A23 -> aA77  

A34 -> bA88 

A35 -> A34A45  

A45 -> aA99  

A11 -> ε  //can remove 

A22 -> ε  //can remove 

A33 -> ε  //can remove 

A44 -> ε  //can remove 

A55 -> ε  //can remove 

A66 -> ε  //can remove 

A77 -> ε 

A88 -> ε 

A99 -> ε 

 

We could then remove any Ajj rule that cannot be reached. 
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Activity 11: Convert PDA to CFG 
 

L = {w0wR | w ϵ {0,1}*} 

 

Convert this PDA to a grammar: 

 

 

 

 

 

 

 

 

 

 

 

  

 

   

Q0 
Q1 

Q2 Q3 

0, ε-> ε 

0, 0-> ε 

1, 1 -> ε 
ε, $-> ε 

 
ε, ε -> $ 0, ε-> 0 

1, ε-> 1 
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Theorem: CFLs are closed under union. 
 

Proof: Assume A and B are context free languages with CFGs GA = (VA, ΣA, RA, SA) and GB = (VB, ΣB, RB, SB). 

Rename all variables X in VA as XA and rename all variables X in VB as XB. Create a new grammar G for A U 

B as follows: 

 

V = VA U VB U {S’} where S’ is a new start variable 

 

Σ = ΣA U ΣB 

 

R = RA U RB U {S’ -> SA | SB} 

 

S = S’ 

 

U  is a grammar that generates the union of the two languages. All strings are generated from S’, a rule 

that goes to either the start rule for the grammar for A or the start rule for the grammar for B. Since all 

variables were renamed with subscripts for the language they generate, no strings will be formed from a 

mixture of rules in GA and GB. 

 

-------------------------------------------- 
By the way, CFLs are also closed under concatenation and star, which you may be proving for 

homework. However, CFLs are NOT closed under complement and intersection, which will be shown 

later in the course.  
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Can you build a PDA or CFG for the language anbncn? 

 

 

 

 

Hmmm… stack can get two groups to be equivalent, but how to get all three groups of symbols 

to be the same length? Perhaps this language is not context free.  
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Pumping Lemma for Context Free Languages 
 

If A is context free, there is a number p (the pumping length) such that if s is a string in A with length at 

least p, then s may be divided into five pieces: s = uvxyz, such that: 

1. for each i >= 0, uvixyiz is in A 

2. |vy| > 0 

3. |vxy| <= p 

 

 

 

Proof idea: 

Let G be a grammar that generates A. Let s be some long string in A. s has a parse tree with the root as 

the start variable. Since s is long, some variable V must repeat since the grammar has a finite # of 

variables. Assume R is the repeating variable. Then the parse tree must look like: 

 

   S 

 

 

     

   R  

 

   R 

 

 

 

 u                  v       x          y          z 

 

If we remove the bottom R (don’t re-substitute), then we can create the string uxz (by having the middle 

R go to x). 

 

We could also resubstitute the top R into the bottom R. 

So, now S -> uvvxyyz. 

 

We could do this for any number of substitutions, to get uvixyiz is in A. 

 

What must the value of p be? 

Let G have |V| variables. 

 

p = b|V| + 1  where b is the max number of symbols on the right side of any rule 

   p is the number of symbols on the leaves 
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Then, the parse tree for S with length >= p will be at least |V| + 1 tall. 

 

Why must |vy| > 0? 

If s can have a parse tree with |vy| = 0 (meaning no symbols being used), then we can find a smaller 

parse tree for s that does not contain vy, so we’ll use that minimum parse tree. 

 

Why must |vxy| <= p? 

 

  S 

 

  R 

 

u        vxy  z 

 

Choose R, the repeating variable lowest in the tree. The height of R to the bottom of the tree is at most 

|V| + 1 high (if each rule is used once). Each rule goes to at most b items on the right side, so a tree of  

height |V| + 1 with spread b, can generate at most b|V| + 1 symbols. So |vxy| <= p. 

 

 

 

Let’s see how this plays out with a context free language: 

 

A -> 0A1 | # 

 

p = 32 = 9 //note: 9 is not necessarily the minimum pumping length – it’s at least the minimum 

 

Let s = 0000#1111 

Divide s = uvxyz, such that 

u = 000 

v = 0 

x = # 

y = 1 

z = 111 

 

We can pump this up or down and the resulting string is still in the language. 
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Using the pumping lemma to show a language is NOT context free: 
 

Game: 

 

1. Adversary chooses p 

2. Given p, you choose a string w in the language such that |w| >= p 

3. The adversary chooses the decomposition of w = uvxyz such that |vy| > 0 and |vxy| <= p 

4. For each decomposition, you show that there exists a specific integer value for i such that uvixyiz 

is not in the language. 

 

 

 

Example:  

A = {anbncn | n >= 0}. Show A is not context free. 

Proof: Assume A is context free. Thus, the pumping lemma for CFLs holds. Let p be the pumping length. 

Let s = apbpcp.  Consider s = uvxyz subject to |vy| > 0 and |vxy| <= p: 

 

aaa…….aaaaabbbb….bbbbbbccc…..ccccc 

<-      p         -><-     p            -><-      p       -> 

 

Where could v and y be? 
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Step 1: Choose s: apbpcp  

 

Step 2: Consider all possible decompositions 

 

Case 1: vxy is in the set of all a’s, all b’s, or all c’s. let i = 2. Consider uv2xy2z.  This pumped string has too 

many of one letter versus the other two letters and is not in the form anbncn. The pumped string is not in 

A. 

 

Case 2: v is in a’s, y is in b’s OR v is in b’s and y is in c’s. Let i = _______. Consider uvixiz. Why is the 

pumped string not in A? 

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________ 

 

Case 3: v or y includes a mixture of a’s/b’s or a mixture of b’s/c’s. Let i = _____________. Consider uvixiz. 

Why is the pumped string not in A? 

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________ 

 

 

Are there any other cases? Remember that |vxy| < p, so v could not be in the a’s and y in the c’s. v an y 

would be too far apart.  
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Examples of proofs showing languages are not context free 
 

A = {w#t | w is a substring of t over {a,b}*} 

 

Prove A is not a context free language. 

 

We will proceed with proof by contradiction. Assume A is a context free language. Thus, the pumping 

lemma holds and we can assume some pumping length p > 0 exists for language A. Then, let: 

 

s = apbp#apbp 

 

Note that this string s has length 4p + 1, so its length is definitely >= p. Also, s is clearly in language A 

since the w piece of the string is equal to the t piece of the string and a substring can be the string itself. 

 

Now, let’s consider the ways s can be split into five pieces, such that: 

 

s = uvxyz 

 

with the constraints that |vxy| <= p and |vy| > 0. 

 

For the simplicity of this proof, define a segment as one of the following strings of s: ap or bp 

 

Case 1: Both the v and y substrings are in the substring before the #. Consider i = 2. Consider s’ = uv2xy2z. 

Note that since |vy| > 0, at least one more a or one more b in one of the segments before # appears in 

s’ versus s. Then, the substring w in s’ before the # is longer than the substring t after the #, so w cannot 

be a substring of t. Therefore, s’ is not in A. 

 

Case 2: One of the v or y substrings contain the # character. Consider i = 0. Consider s’ = uv0xy0z. Because 

the # is no longer in s’, s’ is not in the right form to be in A. 

 

Case 3: Both the v and y substrings are in the substring after the #. Consider i = 0. Consider s’ = uv0xy0z. 

Since |vy| > 0, at least one character is removed from the substring after the # character. Because the 

substring w before the # in s’ is longer than the substring t after the # in s’, w cannot be a substring of t. 

Therefore, s’ is not in A. 

 

Case 4: The non-empty v part is bn for 1 <= n <= p-2 in the segment of b’s prior to the # and the non-

empty y part is ak for 1 <= k <= p-2 in the segment of a’s after the #. Note that if v is empty, then use 

case 1. If y is empty, then use case 3. Consider i = 0. Consider s’ = uv0xy0z. Then, at least one b prior to 

the # is removed from s and at least one a after the # is removed from s. Because at least one a is 

removed after the #, the number of a’s before the # is bigger than the number of a’s after the # in s’. It is 

not in the form w#t where w is a substring of t. Therefore, s’ is not in A. 
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We have considered all possible decompositions of s into uvxyz such that |vxy| <= p and |vy| > 0. For 

each decomposition, we have found a pumping value i, that when the string s is pumped, it is not a 

member of A. Therefore, the pumping lemma fails to hold. We have a contradiction. Hence, the 

language A is not context free. 
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Activity 12: Proving Non-CFL using Pumping Lemma 
 

Complete proofs to show that the following languages are NOT context-free: 

 

B = {anb2nc3n | n >= 0} 
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Activity 12 continued 
 

C = {w | w contains an equal number of a’s and b’s and an equal number of c’s and d’s} 
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Summary (Context Free Languages) 
 

CFLs are closed under union, concatenation, and *. 

Not closed under complement and intersection. 

 

 

 

Can you name a CFL that is not closed under complement? 

 

 

 

 

 

 

Can you name two CFLs that are not closed under intersection? 

 

 

 

 

 

 

CFLs can be expressed using a grammar (CFG) or by a pushdown automata (PDA). 

 We showed earlier how to convert CFG -> PDA. 

 We showed earlier how to convert PDA -> CFG. 

 

 

 

 

 

 

 

 Regular 

 

 Context Free 

 

 

 

 

 

  

 

 

Non Context Free 
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CS357 Review Sheet – Midterm Exam #2 
 

You may use 1 crib sheet as notes during the exam. All other resources are off limits – you are on your 

honor to follow these exam rules.   

          

Content: Exam 2 will primarily cover sections 1.4 through 2.3 of the textbook. Material will be drawn 

from homework assignments, lectures, and the textbook. Note: you should still know the content from 

chapters 0.1 through 1.3, as it forms the foundation for the topics most recently covered. However, the 

exam will focus on topics covered since the first exam. 

 

Procedure: The exam will start promptly at the start of class. Please arrive on time. You may use one 

sheet of 8.5” x 11” paper (both sides) during the exam. Please prepare your own notesheet; you may 

type or handwrite your notesheet. Other than your sheet of notes, the exam is closed-book, closed-

calculator, closed-computer other than the moodle links for the problems and solution uploads, and 

closed-notes.  

 

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed 

below and there may be topics that we covered in class that are not explicitly listed. 

• Programming regular expressions 

• Nonregular Languages 
o Prove using the Pumping Lemma, proof by contradiction 
o Prove via closure properties (union, concat, star, intersect, complement) and proof by 

contradiction 

• Context-Free Languages (CFLs) 
o Grammars (CFG) 

▪ Given a grammar, generate the language and generate strings in the language 

• Generate parse tree for a string 
▪ Given a language, generate a grammar for it 
▪ Determine if a grammar is ambiguous 
▪ Converting a DFA to a grammar (shows that all regular languages are CFLs) 
▪ Converting a grammar to Chomsky Normal Form (CNF) 

o Pushdown Automata (PDA) 
▪ Formal definition 
▪ Given a language, generate a PDA to recognize the language 
▪ Given a PDA, describe the language it recognizes 
▪ Equivalence with CFGs (CFG->PDA, PDA->CFG conversions) 

o Proving closure properties (union, concatenation, star, etc. by modifying grammars or 
modifying PDAs) 

• Non-Context-Free Languages (if we get through material) 
o Proving using the Pumping Lemma, proof by contradiction 
o Proving via closure properties (union, concat, *) and proof by contradiction 
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PREVIOUS TOPICS – EXAM 1 

• Discrete Math Review 
o Sets 
o Tuples 
o Functions and Relations 
o Graphs 
o Strings and Languages 
o Boolean Logic 
o Proofs 

▪ Direct 
▪ Indirect 
▪ Contradiction 
▪ Induction 
▪ Construction 

• Regular Languages (those that can be recognized by DFAs, NFAs, or written as regular 
expressions) 

• DFAs 
o Given a language, construct the DFA 
o Given a DFA, state the language it recognizes 
o Formal definition as a tuple 

• Union, Concatenation, * 
o Closure of regular languages under union, concatenation, and * (know the proofs) 

• Closure of regular languages under other operations such as reverse and shuffle 

• NFAs 
o Given a language, construct the NFA 
o Given an NFA, state the language it recognizes 
o Converting NFAs to DFAs 
o Formal definition as a tuple 

• Regular Expressions 
o Given a regular expression, state its language 
o Given a language, create a regular expression  
o Converting regular expressions to NFAs 
o Converting DFAs to regular expressions 
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Introduction to Turing Machines 
 

----------------------------------- 

            infinite tape (starts with input string) 

----------------------------------- 

 

 

 

 

Rules about Turing machines: 

1. Tape can be read and written 

2. Head can move left and right  (so input can be read more than once) 

3. Tape is infinite in both directions 

4. Accept and reject states take effect immediately (don’t need to finish reading entire input string 

as with DFAs, NFAs, and PDAs) 

 

Example: 

A = {w#w | w is over {0,1}*} 
 

Let’s see what the machine looks like as a state machine: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What do transitions mean now? 

1 -> x, R  Read a 1, replace it with x, and move head right 

1,0 -> L  Read a 1 or 0, do not change it, and move head left 

x -> R  Read x, do not change it, and move head right 

 

 

 

 

 

 

 

 

 

 

 

 

1 -> x, R 

q_accept 

0,1 -> R 

# -> R 

x -> R 

1 -> x, L 

0,1, x -> L 

# -> L 

1, 0 -> L 

x -> R 

# -> R 

x->R 

_ -> R 

0 -> x, R 

0,1 -> R 

# -> R 

x –> R 

0 -> x, L 

q1 

q2 

q4 

q3 

q6 

q7 

q5 

q8 
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Formal description: 

Q = {q1, q2, q3, q4, q5, q6, q7, q8, q_accept, q_reject} 

Σ = {0, 1, #} 

Γ = {0, 1, #, x, _} 

δ (see above) 

q1 is start state 

q_accept 

q_reject (implicit arrows – go here if no transition is present in picture) 

 

English description of TM M1 to accept language A: 

 

M1:  
On input w: 

1. Zigzag across the #, matching symbol for symbol. If the symbols across the # match, cross them 

out. If they do not match or there are no non-crossed-out symbols on the right to match, reject. 

2. Once all symbols are crossed out before the #, check for any non-crossed symbols on the right 

side of #. If there is a non-crossed out symbol on the right, then reject. If all symbols are crossed 

out, accept. 

 

 

 

 

 

The start configuration always starts with q0 followed by the string 

 

An accepting configuration is one that contains the state q_accept 

A rejecting configuration is one that contains the state a_reject 

A halting configuration is either an accepting configuration or a rejecting configuration. 

 

If M is a Turing machine, L(M) is the language that M recognizes/accepts. 

 

Defn: A language is Turing-recognizable if some Turing machine recognizes it. (If string is in the language, 

the TM will accept it. If the string is not in the language, the TM may reject or may not halt.) 

 

 Note that now that a TM can move left and right, we could get stuck in an infinite loop. So, the 

machine can now accept, reject, or loop. If the machine always halts by accepting or rejecting every 

string, then we say a TM decides the language. 

 

Defn: A language is Turing-decidable if some Turing machine decides it (for all input, the machine 

accepts or rejects). 
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Put the labels for language classes here: 

  

Regular 
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TM Example 1: an+1 bn 

 

Try creating a TM for this language and then watch the video. 

 

Note: this language is a CFL, so a PDA can be made for it, but you should create a TM for it. 
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TM Example 2: an+2 bn+1 cn 
 

This one will be completed via a TM description (like an algorithm) for how the TM moves based on 

what it reads.  

 

Hint: TM can read and overwrite characters. 

 

Hint: TM can move left or right. 

 

Try to create the description and then watch the video. 
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Variants of Turing Machines 
 

Let’s look at variants of TMs that are equivalent with the model (Turing-equivalent). 

 

A. Stay Put 

a. Allow head to stay put in addition to moving left or right. 

 

 

How is it equivalent to a regular TM? Must show a regular TM can be converted to a Stay Put TM and a 

Stay Put TM can be converted to a regular TM. 

 

 

 

 

 

B.  Multitape 

 

This machine has access to a finite # of tapes and has heads pointing to each of the k tapes. 

 

 

How is it equivalent? 
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C. Nondeterministic 

 

A ND TM can be in more than one state. So, now the machine can be in the power set of states. Plus, if 

any branch accepts, the string is accepted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why do we have different models of TMs? 

 

1. It’s like programming languages. Some suit solving particular problems more easily. 

 

Now, we can state: 

1. A language is Turing-recognizable if and only if some ND TM recognizes it. (or multi-tape or stay-

put) 

2. A language is Turing-decidable if and only if some ND TM decides it. 

 

A TM really defines what we can accomplish with an algorithm. 
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A computer’s instruction set, a programming language, or an automaton is considered Turing-complete 

is it can be used to simulate any single-tape Turing Machine. Most programming languages are Turing-

complete. 

 

For example, if an algorithm can be coded in LISP, it can be coded in C, or Java, or Smalltalk, or R, or 

Prolog, etc. 

 

We’ll see later in the course that we can convert a TM to Boolean logic, which forms the basis of the 

architecture of many computer systems. 

 

Another model of computation that is equivalent to Turing Machines is lambda calculus (untyped), 

developed by Alonzo Church. Lambda calculus defines operations as functions and functions can be 

applied to arguments, much like in LISP or scheme.   
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Activity 13: Practice Problems with Turing Machines 
 

Complete the following TMs. 

 

1. Draw the state diagram of the Turing Machine for the following language: 

 

A = {anbncn | n >= 0} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Complete the implementation-level (English description) for Turing Machines for the following 

languages. Start with the language that Tammy assigns to your group. 

 

B = {w | w contains an equal number of a’s and b’s}  Σ = {a, b} 

 

 

 

 

 

 

  

 

C = {a2^n | n >= 0} //power of 2 number of a’s Σ = {a} 

 

 

 

 



109 
 

Activity 13 continued 
 

 

D = {#x1#x2#x3#x4#...#xi | xi is {a,b}* and xi does not equal xj}  Σ = {a, b, #} 

 

 

 

 

 

 

 

 

 

 

 

 

E = {aibjck | i x j = k, where i,j,k >= 1}  Σ = {a, b, c} 

 

 

 

 

 

 

 

 

 

 

 

 

These languages show that a TM can compute in the following ways: 

 

A: perform equality testing of 3 unary numbers 

B: perform equality testing of 2 unary numbers 

C: check that a unary number is a power of two 

D: check all pairs of items for uniqueness 

E: perform multiplication with unary numbers 

 

 

So, a TM really is an abstract model of a computer. 
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Examples of decidable languages (and their proofs) 
 

Languages included below: A_DFA, A_NFA, E_DFA, EQ_DFA, A_CFG, E_CFG 

A = {<G> | G is a connected undirected graph} 

 

Notation: <G> means the graph encoded as a string. For <G>, this is a 2-tuple with a list of vertices 

followed by a list of edges. Example encoding: ({a, b, c, d}, {{a, b}, {b, c}, {c, a}, {b, d}}) 

 

How to build TM M? 

 

M: On input <G>, the encoded graph of G: 

1. Check that G is in appropriate form. If not, reject. 

2. Mark first node of G. 

3. Repeat until no new nodes are marked: 

a. For each node in G, mark it if it is attached by an edge to an already marked node 

4. Scan nodes of G. If all nodes in G are marked, accept. Otherwise, reject. 
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ADFA = {<D, w> | D is a DFA that accepts w} 

 

M: On input <D, w>: 

1. Check that D is in proper format. If not, reject. 

2. Simulate D on w (see below). 

3. If D ends in an accept state, accept. If D ends in non-accepting state, reject. 

 

 

How does TM do the simulation? 

Well, D is (Q, Σ, δ, q0, F). Keep track of B’s current state along with input w on the end of the 

tape. Read current input symbol and current state and then find the corresponding transition in 

the δ list. Update the current state by overwriting the state on the tape and cross out the 

symbol from w that was just read. Keep doing this until all symbols in w are crossed off. Check 

the current state. If the current state is in the F list, accept. Otherwise, reject. 

 

ADFA is a decidable language. 
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ANFA = {<N, w> | N is an NFA that accepts w} 

 

M: On input <N, w>: 

1. Check that N is in proper form. If not, reject. 

2. Convert N into equivalent DFA D using technique to convert NFA to DFA (create sets 

representing power set of states in N). 

3. Run TM M’ for ADFA on <D, w>.   //use of subroutine 

4. If M’ accepts, accept. Otherwise, reject. 
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EDFA = {<D> | D is a DFA and L(D) is empty} 

 

Use DFA description and see if there is a series of transitions from the start state to an accept state. 

 

M: On input <D>: 

1. Check that D is in proper form. If not, reject. 

2. Check set F of D. If F is empty, accept. //this means there are no accept states in D 

3. Mark start state 

4. Repeat until no new states are marked: 

a. Mark any state that has transition into it that is not already marked. 

5. If no accept state is marked, accept. Otherwise, reject. 
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EQDFA = {<A, B> | A and B are DFAs and L(A) = L(B)} 

 

Show that EQDFA is decidable. 

 

How? Let’s look at the Venn Diagram for L(A) and L(B). 

 

 

 

      Xxxxx   xxx 

 

 

 

The xxxxxx part is empty if L(A) = L(B).  So the idea is to build a machine to see if L(C) is empty where L(C) 

is defined as: 

 

L(C) = (L(A) intersect L(B) complement) union (L(A) complement intersect L(B)) 

 

We know how to create a DFA to accept complement (reverse accept and reject states for DFA). 

We know how to create a DFA to accept intersection (create pairs of states). 

We know how to create a DFA to accept union (create pairs of states). 

 

Now we can create a TM to decide EQDFA: 

 

M: On input <A, B>: 

1. Check that A and B are proper DFAs. If not, reject. 

2. Construct Bc to accept L(B) complement. 

3. Construct Ac to accept L(A) complement. 

4. Construct D to accept L(A) intersect L(B) complement. 

5. Construct E to accept L(A) complement intersect L(B). 

6. Construct F to accept L(D) union L(E). 

7. Run TM M’ to decide EDFA on <F>. 

8. If M’ accepts, accept. If M’ rejects, reject. 

 

Now, we know we can write a program to know if two DFAs are equivalent. 
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ACFG = {<G, w> | G is a CFG and G generates w} 

 

First, why is this language important to computer scientists? 

 

Idea: could try all derivations of G, but could go on infinitely with recursive rule substitutions. So, this 

may never halt and won’t decide ACFG. 

 

Need more help: convert G to CNF. In CNF, a string of length  >= 1 will take exactly 2|w|-1 steps to 

derive it.  

 

Aside: Proof that given a grammar G in CNF, the string w with length >= 1 will take exactly 2|w|-

1 steps to derive. 

 

Proof: Consider w where |w| = n and w is generated by G. Each rule in G with the form A -> BC 

increases the length of the string by 1. So, there are n-1 steps to generate n variables. Each 

variable will then go to a terminal with a rule V -> a, so there are n steps for these substitutions. 

In total, 2n-1 steps are required. 

 

Now, back to ACFG. 

 

M: On input <G, w>: 

1. Check that G and w are in proper form. If not, reject. 

2. Convert G to CNF. Let the new grammar in CNF be G’. 

3. List all derivations with 2n-1 steps from grammar G’ where n = |w|}. If n is 0, list all derivations 

of one step. 

4. If any derivation generates w, accept. Otherwise, reject. 
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ECFG = {<G> | G is a CFG and L(G) is empty} 

 

Can we try every string? 

 

Idea: can’t just try every string (infinite # to try). Instead, use grammar to see if any path from terminals 

back to start rule exist. 

 

TM: On input <G>: 

1. Check that G is in proper form. If not, reject. 

2. Mark all terminal symbols in R of G. 

3. Repeat until no new variables are marked: 

a. Mark any variable A where G has the rule A -> M1M2M3… Mk where every Mi has already 

been marked. 

4. If the start variable is not marked, accept. Otherwise, reject. 
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Theorem: Every CFL is decidable. 
 

Proof: Let A be a CFL. We need to show that we can build a TM M that decides strings in A. Let w be a 

string that is input to the TM M and let G be the CFG for A. 

 

Here is TM M to decide A: 

On input w: 

1. Run TM M’ for ACFG on <G, w>. 

2. If M’ accepts, accept. Otherwise, reject. 

 

 

 

Now, what do we know about language classes? Draw the circles.  
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Decidable Proof Examples 
Try to complete these proofs and then watch the videos. Remember, you can use already proven 

decidable languages’ TMs as subroutines. 

 

1. Show AεCFG = {<G> | G is a CFG that generates ε} is decidable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Show A = {<D> | D is a DFA which accepts at least one string with an even number of b’s.} is decidable. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Show A = {<P> | P is a PDA that accepts no strings of even length}  
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Activity 14: Proving Languages are Decidable 
Show the following languages are decidable (i.e. you can build a TM that decides the language). In all 

machines below, the alphabet is {a,b}*.  

 

You might find the following decidable languages useful as subroutines in solving these problems: 

• ADFA, ANFA, EDFA, EQDFA, ACFG, ECFG 

A = {<D> | D is a DFA which does not accept any string with an odd number of a’s.} 

 

 

 

 

 

 

 

 

 

 

 

B = {<R,S> | R and S are regular expressions and L(R) is a subset of L(S).} 

 

 

 

 

 

 

 

 

 

 

 

C = {<G> | G is a CFG that generates some string in a*.} 
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Activity 14 continued 
 

D = {<D> | D is a DFA that accepts some string with an equal number of a’s and b’s.} 

 

 

 

 

 

 

 

 

 

 

 

E = {<D> | D is a DFA and L(D) is an infinite language} 
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Theorem: Decidable languages are closed under union. 
 

Proof: Let A and B be decidable languages with always-halting TMs C and D, respectively. Create a two-

tape TM E for the union of A and B as follows. 

 

On input w: 

1. Copy w to the second tape. 

2. Run TM C on the first tape. If C accepts, accept. If C rejects, go to step 3. 

3. Run TM D on the second tape. If D rejects, reject. If D accepts, accept. 

 

 We have created a two-tape TM E that decides the union of two decidable languages, so 

decidable languages are closed under union. Recall that multi-tape TMs are equivalent to single-tape 

TMs, so the two-tape TM E shows that the union of A and B is decidable. 

 

 
How could you modify the proof to show decidable languages are closed under intersection?  
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Can you create a TM to decide the following language? 
 

F = {<M, w> | M is a Turing Machine that accepts w} 

 

 

 

 

What would the decider for F need to do? 

 

 

 

 

 

Is F Turing-recognizable? 

 

 

 

 

Is F Turing-decidable?  
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ATM is undecidable 
 

ATM = {<M, w> | M is a Turing Machine and M accepts w} 

 

Proof that ATM is undecidable: (by contradiction) 

Assume ATM is decidable. Then there exists a TM called H that decides ATM. 

 

 

 

 

 

 

 

 

 

Note that if M accepts w, H accepts. If M rejects w, H rejects. If M loops on w, H rejects. 

 

We’ll create a machine D that uses H as a subroutine and reverses H’s output: 

 

 

 

 

 

 

 

 

 

 

 

 

Note that M is the machine H is using to simulate to see if M accepts its own string representation. This 

is similar to a C compiler taking in the code for the C compiler. 

 

Well, we just created a TM D, so let’s see what happens when we run D on input <D>: 

 

 

 

 

 

 

 

 

 

 
M accept 

w? 
accept 

reject 

true 

false 

M 

w 

H: 

 

 

 Does H accept 

<M, <M>>? 
Reject (when M accepts <M>) 

true 

Accept (when M rejects <M>) 

false 

M 

M 

M 

H 

D: 

 Does D 

accept <D>? 
reject 

accept 

true 

false 

D 

D: 
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Is this possible? no (to have a machine that rejects <D> when it accepts <D> and accepts <D> when it 

rejects <D>) 

 

 

Alternate proof: 

 

Another way to look at ATM being undecidable. Instead of having H determine accept or reject, the TM 

will output “halt” or “loop”. So, H’ will detect if the machine M will halt on input w or loop on input w. 

 

Construct H’ 

 

 

 

 

 

 

 

 

 

Now, construct D’ that uses H’: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
M accept 

w? 
 

halt 

Loop 

forever 

true 

false 

M 

w 

H’: 

 

 Does H’  

halt? 

loop 
true 

halt 

false 

M 

M 

M 

H’ 

D’: 
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Run D’ on D’: 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
D’ 

D’: 

D’ loops forever when D’ halts 

D’ halts when D’ loops forever 

 

(impossible) 
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Notes about Turing-recognizable 
 

Theorem: A language A is decidable if and only if A is Turing-recognizable and 

the complement of A is Turing-recognizable. 
 

Proof: 

 -> Assume A is decidable. Then a TM that decides A will halt on all input. So A is TR and A 

complement is TR. 

 <- Assume A is TR and the complement of A is TR. Let M1 recognize A and M2 recognize A 

complement. Construct M as follows: 

On input w: 

1. Run M1 on w on one tape. 

2. Run M2 on w on a second tape, alternating between running M1 and running M2. 

3. If M1 accepts, accept. If M2 accepts, reject. 

 

M decides A since every string is in A or A complement. 

 

 

Definition: A is co-Turing-recognizable if the complement of A is Turing-recognizable. 

 

Theorem: The complement of ATM is not Turing-recognizable. 
 

Proof: Clearly, ATM is Turing-recognizable by simulating M on w. Assume ATM is co-Turing-recognizable. 

Then by the theorem above, ATM is decidable. But we showed last time that ATM is undecidable, so the 

complement ATM is not Turing-recognizable. 

 

Now, let’s look at our circles again: 

 

 

 

 

 

 

  reg         CFL  decidable recognizable unrecognizable 

  a*          0^n1^n ADFA  ATM  complement of ATM 
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Reductions (proving languages are undecidable) 

 
What is a reduction? 

 Using a solution to solve a different problem (think functions or sub-routines in programming) 

 Example: If you already know how to calculate the area of a rectangle rect_area(x,y), then you 

can create a function called square_area(x) that uses rect_area(x,x) as a subroutine. 

 

Reductions will be our way to show a language is undecidable. There is no pumping lemma for showing 

languages are not decidable. 

 

 
Theorem: If A α B (A reduces to B) and B is decidable, then A must be decidable. (exactly what we were 

doing with decidable problems before) 

 

Proof: Assume A reduces to B and B is decidable. To construct TM for A: 

On input w: 

1. Reduce w in A to w’ in B. (mapping w to w’) 

2. Run TM M for B on w’. If M accepts w’, accept. If not, reject. 

 

Corollary: (contrapositive statement) If A is undecidable and A reduces to B, then B is undecidable. 

 
Game: 

Given: a language B and want to show B is undecidable (proof by contradiction) 

1. Assume B is decidable. 

2. Choose another language A that is already proven to be undecidable. 

3. Show A reduces to B. 

4. Conclude B is undecidable (since A is undecidable and A reduces to B) 
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HaltTM is undecidable 

 
HALTTM = {<M, w> | M is a TM and M halts on w} 

 

Show HALTTM is undecidable. 

 

Proof: Assume HALTTM is decidable by a Turing Machine R. Consider the undecidable language ATM and 

construct TM S that decides ATM by reducing ATM to HALTTM. 

 

S: On input <M, w>: 

1. Run R on <M, w> 

2. If R rejects, reject. 

3. If R accepts, simulate M on w until it halts. If M accepts, accept. If not, reject. 

 

Thus, if R decides HALTTM then S decides ATM. We know ATM is undecidable, so we have a contradiction. 

HALTTM must be undecidable. 

 

Picture version (remember, a picture is not a formal proof but this really helps to understand what is 

happening) 

 

 

 

 

 

 

 

 

 

 

Code-like version: 

 

Create function F that returns one of two values {accept, reject}, similar to a Boolean function. 

Parameters: M, a Turing Machine written in formal description; w, a string of characters 
F(<M, w>): 

 result_halt = R(<M, w>) // R is a function that determines if M halts on w 

 if(result_halt == reject) 

  return reject 

 else 

  result_sim = M(w)  // simulate M on w, given description of M 

     // at this point, we know M halts on w since 

     // result_halt is accept; we know the simulation 

     // will halt 

  return result_sim // just return what simulating M on w returns 

 

 
 

 
 

 

M 

w 

S: 

R 

accepts? 
true 

false 

reject 

simulate M 

on w accepts? 
true 

accept 

false 
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Since we created a function F that decides A_TM, we have a contraction with the fact that A_TM was 

already proven to be undecidable. Since the condition embedded inside function F is decidable and 

running M on w is executable on a TM, the only piece of the function that remains that must be 

undecidable is calling and running function R. Function R, therefore, cannot always return the value 

accept or reject. Since function R determines if M halts on w, the language HALT_TM is undecidable. 
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ETM is undecidable 

 
ETM = {<M> | M is a TM and L(M) is empty} 

 

Game: 

1. Assume ETM is decidable. 

2. Show ATM or HALTTM reduces to ETM. 

3. Conclude ETM is undecidable. 
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Run machine for ETM R on <M> and see if it accepts. If so, we know L(M) is empty and <M,w> is not in 

ATM. But what if ETM rejects? That does not tell us anything about <M, w> being in ATM. Need to build 

helper machine that only runs M on w if the input is equal to w. 

 

Proof: Assume ETM is decidable by TM R. 

Build a helper machine M1: 

 

M1: On input x: 

1. If x does not equal w, reject. 

2. If x equals w, run M on w and accept if M accepts. 

 

Note that M1 is buildable since we just add TM states and transitions to check if the input on the tape is 

equal to w. If it is, then we simulate M on w. 

 

Build S to decide ATM as follows: 

On input <M, w>: 

1. Use M and w to construct M1. 

2. Run TM R for ETM on <M1>. 

3. If R accepts, reject. If R rejects, accept. 

 

 
 

 

 

 

 

 

 

 

 

 

Thus, if R decides ETM then S decides ATM. We know ATM is undecidable, so we have a contradiction. ETM 

must be undecidable. 

 

  

 

 
 

M 

w 

S: 

Build M1 given 

M and w 
true 

accepts? 

false 

M1 
 

R reject 

accept 
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Code-like version: 

Create returns a function (higher-order function) with parameter x 

Parameters: M, a Turing Machine description; w, a string 

 
Create(<M, w>): 

 Return function(x): 

  if(x == w) 

   ret = M(w) // run M on w 

   if(ret == accept) 

    accept //note we do not have cases for reject or loop 

  else 

   return reject 

  

 

Create function F that returns one of two values {accept, reject}, similar to a Boolean function. 

Parameters: M, a Turing Machine written in formal description; w, a string of characters  

 
F(<M, w>): 

 M1 = Create(M, w)  

 ret = R(M1)  // R is a function that determines if language of M1 

    // is empty or not 

 if(ret == accept) 

  reject  // reverse the output of ret; if R accepts, that means 

 else   // the language is empty so M does not accept w 

  accept  // if R rejects, the language of M1 is non-empty, 

    // so M must accept w 
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Examples of Reductions to Prove Undecidability 
 

1. Show EQTM is undecidable. 

EQTM = {<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2)} 

 

Idea: assume EQTM is decidable. Reduce ETM to EQTM. 

 

Proof: Assume EQtM is decidable by TM T. Construct E to decide ETM as follows: 

 

On input <M>: 

1. Construct machine MR that rejects all strings. 

2. Run T on input <MR, M>.  

3. If T accepts, accept. If not, reject. 

 

 
 

 

 

 

 

 

 

 

 

 

Thus, if T decides EQTM then E decides ETM. We know ETM is undecidable, so we have a contradiction. 

EQTM must be undecidable. 

 

 

At this point, we have shown that there are 4 undecidable languages: 

 

ATM, HALTTM, ETM, EQTM  [Any of these can be used as the language A for reductions A α B] 

 

 

If it is not immediately obvious how one of the above languages can assist with a reduction, choose ATM. 

 

 

 

  

 

 
 

M 

E: 

Build MR that 

rejects all strings 
true 

accepts? 

false 

MR 
 

T accept 

reject 

M 
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2. Show REGULARTM is undecidable. 

REGULARTM = {<M> | M is a TM and L(M) is a regular language} 

 

Idea: Assume REGULARTM is decidable and construct a decider for ATM. We want to create a helper TM M’ 

such that M’ accepts a regular language if M accepts w and M’ does not accept a regular language if M 

does not accept w. 

 

So, we’ll rig the machine so:  L(M’) = anbn if M does not accept w 

    L(M’) = ∑* if M accepts w 

 

Proof: Assume REGULARTM is decidable by a TM Y. Construct S to decide ATM as follows: 

 

On input <M, w>: 

1. Construct TM M’ where M’ is the following: 

a. On input x: 

i. If x has the form anbn, accept. 

ii. If not, run M on w. If M enters its accept state, accept. 

2. Run Y on <M’>. 

3. If Y accepts, accept. If Y rejects, reject. 

 

 

 

 

 

 

 

 

 

 

 

So, we have a decider S for ATM. But ATM is undecidable, so a decider Y for REGULARTM must not exist. 

Therefore, REGULARTM is undecidable. 

 

  

 

  

 

M 

w 
Construct M’ 

given M and w 

M’ Y 

Accepts? 
T 

F 

accept 

reject 

S: 
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3. Show B is undecidable. 

B = {<M, w> | M is a two-tape TM which writes a nonblank symbol on its second tape when M runs on 

w} 

 

Idea: Assume B is decidable and construct a decider for ATM. We want to create a helper TM T such that T 

writes a $ on the second tape if M accepts w and T does not write a $ on the second tape if M does not 

accept w. 

 

Proof: Assume B is decidable by TM R. We’ll construct TM S to decide ATM: 

 

S: On input <M, w> 

1. Use M to construct a two-tape TM T where T is: 

a. On input x: 

i. Simulate M on x with first tape. If M enters accept state, write a $ on the second 

tape. 

2. Run R on <T, w>. (Note that x is assigned w as its argument to the TM) 

3. If R accepts, accept. If not, reject. 

 

 

 

 

 

 

 

 

 

 

We have built a decider S for ATM, but ATM is undecidable. Thus, there is no decider R for language B, so B 

is undecidable. 

  

 
  

 

M 

w 

Construct T given 

M 

T R 

Accepts? 
T 

F 

accept 

reject 

S: 
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Activity 15: Prove Languages are Undecidable 

Hint: reduce from A_TM <M, w> for these problems 
 

INFINITETM = {<M’> | M’ is a TM and L(M’) is infinite} 

Hint: rig M’ so that M’ has a finite language if M (of A_TM) does not accept w (of A_TM) and accepts an 

infinite language if M accepts w. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVERSE = {<M’> | M’ is a TM that accepts the reverse of w whenever it accepts w} 

Hint: rig M’ so that M’ accepts ‘ab’ and ‘ba’ if M (of A_TM) accepts w (of A_TM) and M’ accepts only ‘ab’ 

if M does not accept w. 
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Activity 15 continued 
 

 

WRITE_BLANK = {<M’> | M’ is a TM that writes a blank symbol over a nonblank symbol during the 

course of its computation on any input string} 

Hint: rig M’ so that it only writes a blank over a non-blank if M (of A_TM) accepts w and M’ does not 

write a blank over a non-blank if M does not accept w.  
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Rice’s Theorem 
 

Rice’s Theorem: Let P be a language consisting of TM descriptions where P fulfills two conditions: 

1. P is non-trivial (P contains some but not all TM descriptions) 

2. P is a property of the TM’s language (when L(M1) = L(M2) then <M1> is in P if and only if <M2> 

is in P.) 

Then P is undecidable. 

 

 

Proof Idea: Assume P is decidable. Show ATM reduces to P, so P must then be undecidable. 

 

Proof: Assume P is decidable by TM D. Assume P is non-trivial, so there is some TM <T> in P. Let <TR> be 

a TM that always rejects. Either <TR> is in P or <TR> is not in P. Without loss of generality, assume <TR> is 

not in P. (If <TR> is in P, then it is not in the complement of P and we use the decider for P complement 

instead.) 

 

<TR> is not in P. We’ll build S to decide ATM as follows: 

 

S: 

On input <M, w>: 

1. Use M and w to construct machine M’: 

a. M’: On input x: 

i. Simulate M on w. If it halts and rejects, reject. If it accepts, simulate T on x. If T 

accepts x, accept. 

b. Run D on <M’> to determine if <M’> is in P. If D accepts, accept. If not, reject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S: 

M  

T D M’ Construct M’ 

given M, w, and T  

  

Accepts? w 
accept 

F 

reject 
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M’ simulates exactly what T does if M accepts w. Thus, L(M’) = L(T) if M accepts w and L(M’) = ø = L(TR) if 

M does not accept w. <T> is in P and <TR> is not in P. Thus, <T> is in P if and only if M accepts w. So, we 

have a decider S for ATM which contradicts the fact that ATM is undecidable. Thus, P is undecidable. 
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Example 1 using Rice’s Theorem 

 
 

INFINITETM = {<M> | M is a TM and L(M) is infinite}. Prove this is undecidable. 

 

Proof: Use Rice’s Theorem. (Just need to show the two conditions hold) 

 

Condition 1: INFINITETM is non-trivial since some TMs have infinite languages and some do not. For 

example, a TM that accepts all strings has an infinite language. A TM that accepts just the string “a” 

accepts a finite language and would not be in INFINITETM. 

 

Condition 2: If two TMs M1 and M2 recognize the same language, then either both M1 and M2 accept 

an infinite language and so both are in INFINITETM or M1 and M2 accept a finite language, so neither are 

in INFINITETM. 

 

By Rice’s Theorem, INFINITETM is undecidable. 
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Example 2 using Rice’s Theorem 
 

L = {<M> | M is a TM and L(M) contains exactly two distinct strings}. 

 

Show this is undecidable using Rice’s Theorem. Try it and watch the video. 

 

Hint: you need to show both conditions hold. 
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Activity 16: Practice with Rice’s Theorem 
 

Use Rice’s Theorem to show the following languages are undecidable: 

 

REGULARTM = {<M> | M is a TM and L(M) is regular}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1011 = {<M> | M is a TM and 1011 is in L(M)} 
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Activity 16 continued 
 

Questions: 

A = {<M> | M does four consecutive right transitions on some input} 

 // can you use Rice’s Theorem? 

 

B = {<M> | L(M) contains more than 100 strings} 

 // can you use Rice’s Theorem?  

 

C = {<M, w> | M writes a $ on the tape when M is run on w} 

 // can you use Rice’s Theorem?  
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ALLCFG is undecidable 
 

Problem: ALLCFG = {<G> | G is a CFG and L(G) = Σ*} 

 

Proof Sketch: 

We will reduce ATM to ALLCFG. So, we’ll construct a grammar G such that G generates all strings if and only 

if M does not accept w. The strings that will be generated by G are configurations of the TM M on w 

used as input to ATM. 

 

example configuration string: #c1#c2# … ck #  

where c1 is the ith step of M on w. 

 

Proof: Assume ALLCFG is decidable by Turing Machine A. We will reduce ATM to ALLCFG by creating a 

decider for ATM that uses the decider A. 

 

We need to create a grammar G given <M, w>. We want G to generate all invalid series of 

configurations given <M, w>. So what would G do? 

 

G generates: 

1. Strings that do not start with #c1   // All valid configs must start with initial config 

2. Strings that do not end with accepting configuration  

// We’ll modify M to read to the right before accepting 

3. Strings where ci does not yield ci+1 given machine M and w  // Invalid transition 

 

Instead of generating G directly, it is easier to generate a nondeterministic PDA with structure as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Does w start with #c1 where c1 is the 

initial configuration of M on w? 

If no, accept. 

Does w end with qaccept#? 

If no, accept. 

q0 

Nondeterministically, choose a ci to 

check. Does ci yield ci+1? 

If no, accept. 
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The first two branches are easy to write (simple check that a DFA could do). The third branch is a bit 

more tricky. 

 

How can we see if cI yields c1+1? 

We need to push symbols of cI onto stack and then pop symbols one at a time to see if the configuration 

ci+1 is not valid. But, when popping the symbols, ci will be in the reverse order. Therefore, we modify the 

configuration strings to be as follows: 

 

#c1#c2
R#c3#c4

R# … ck#  // note ck will be ck
R if there is an even number of configurations 

 

So, we now have a PDA P that can be converted to a CFG (using procedure shown in lecture). 

 

Description of TM S: 

On input <M, w>: 

1. Construct PDA P given above. 

2. Convert P into equivalent CFG G. 

3. Run A on <G>. If A accepts, reject. If A rejects, accept (since the only string not generated by G 

would be the accepting configuration). 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have built a decider for ATM, but ATM is undecidable, so ALLCFG must be undecidable. 

 

  

 
M 

 Accepts? 
Convert P 

to CFG G 
P Construct PDA P 

given M and w 

  

w 

F 

reject 

accept 

S: 

 G A T 
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Activity 17: Practice with choosing if a language is decidable or undecidable 

 
For each language below, determine if it is decidable or decidable. Hints: can you build a TM that 

accepts or rejects on all strings? Can you use Rice’s Theorem? Can you reduce from ATM? 

 
Decidable or undecidable? 

A = {<M> | M is a TM and L(M) is all strings that have ‘bbb’ as a substring} 

 

B = {<M> | M is a TM that has 50 states} 

 

C = {<M1, M2> | M1 and M2 are TMs and L(M1) == L(M2)} 

 

D = {<D1, D2> | D1 and D2 are DFAs and L(D1) == L(D2)} 

 

E = {<G, w> | G is a grammar that generates w} 

 

F = {<M, w> | M is a TM that accepts w} 

 

G = {<G> | G is a grammar that generates no strings} 

 

H = {<G> | G is a grammar that generates all strings} 

 

I = {<G> | G is a grammar that generates at least one string that has ‘bbb’ as a substring} 

 

J = {<M, w> | M is a TM that writes # over a $ when M runs on w} 

 

 

Prove the following language is undecidable: 

EQCFG = {<G1, G2> | G1 and G2 are grammars and L(G1) == L(G2)} 

Hint: Reduce from ALLCFG.  
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Summary (Decidable and Undecidable) 
 

Decidable Languages are decided by Turing Machines – TM halts on all input. 

  

Recognizable Languages can be recognized by a TM (always accepts strings in the language, but may not 

halt on strings not in the language) 

 

Undecidable Languages cannot be decided by a TM (TM does not halt on all possible input). 

 

 

 

To prove a language is decidable: build a TM (state machine or English description) 

 

To prove a language is undecidable: 

1. Create a reduction proof (proof by contraction) 

2. Use Rice’s Theorem (if P is a non-trivial property about the language of the TM) 

 

 

 

 

Sets of languages: 

Regular languages are CFLs. 

CFLs are decidable. 

Decidable languages are recognizable. 

 

 

Name languages that are decidable: 

 

 

 

 

 

 

 

 

Name languages that are undecidable:  
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CS357 Review Sheet – Midterm Exam #3 
      

You may use 1 crib sheet as notes during the exam. All other resources are off limits – you are on your 

honor to follow these exam rules.  

   

Content: Exam 3 will primarily cover sections 2.3 through 5.1 of the textbook. Material will be drawn 

from homework assignments, lectures, and the textbook. Note: you should still know the content from 

chapters 0.1 through 2, as it forms the foundation for the topics most recently covered. However, the 

exam will focus on topics covered since exam 2. 

 

Procedure: The exam will start promptly at the start of class. Please arrive on time. You may use one 

sheet of 8.5” x 11” paper (both sides) during the exam. Please prepare your own notesheet; you may 

type or handwrite your notesheet. Other than your sheet of notes, the exam is closed-book, closed-

calculator, closed-computer other than the moodle links to the problems and solution submissions, and 

closed-notes. All numerical computations (if any) will be simple enough for you to do by hand. 

 

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed 

below and there may be topics that we covered in class that are not explicitly listed. 

• Proving a language is not context free (pumping lemma) 

• Turing Machines 
o Configurations 
o Formal definition 
o Creating a state machine 
o Equivalent models: nondeterministic, multi-tape, stay put/left/right movements 

▪ To show equivalence: need to convert the model to a regular TM, need to 
convert a regular TM to the model 

o Turing-recognizable (accepts strings in language but may not halt on all input) 
o Turing-decidable (always halts) 

• Decidable Languages 
o To show A is decidable, construct a TM for A that always halts. 
o If A is a decidable language, then A is Turing-recognizable and the complement of A is 

Turing-recognizable (also called co-Turing-recognizable). 
o Examples of decidable languages with regular languages: ADFA, ANFA, AREX, EDFA, EQDFA, 

INFINITEDFA 
o Examples with CFLs: ACFG, ECFG 
o Examples from homework: EDFA_REGEX , ALLDFA , INFINITEPDA  

▪ A = {<R> | R is a regular expression describing a language containing at least one 
string w that has 111 as a substring.} 

▪ B = {<P> | P is a PDA that has a useless state.} 
o Closure: decidable languages are closed under concatenation, complement, union, 

intersection 

• ATM and the Halting Problem 
o ATM is undecidable 
o ATM is Turing-recognizable 
o complement of ATM is not Turing-recognizable 
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o HALTTM is undecidable 

• Undecidable Languages 
o Proof by contradiction (using a reduction from language A to language B) 
o Examples of undecidable languages: 

▪ ATM, HALTTM, ETM, EQTM, REGULARTM, ALLCFG 
o Rice’s Theorem 

▪ Example: INFINITETM is undecidable 
▪ Example: {<M> | M is a TM and 1011 is in L(M)} is undecidable 

o ALLCFG 
 
PREVIOUS TOPICS – EXAM 2 

• Programming regular expressions 

• Nonregular Languages 
o Prove using the Pumping Lemma, proof by contradiction 
o Prove via closure properties (union, concat, star, intersect, complement) and proof by contradiction 

• Context-Free Languages (CFLs) 
o Grammars (CFG) 

▪ Given a grammar, generate the language and generate strings in the language 

• Generate parse tree for a string 
▪ Given a language, generate a grammar for it 
▪ Determine if a grammar is ambiguous 
▪ Converting a DFA to a grammar (shows that all regular languages are CFLs) 
▪ Converting a grammar to Chomsky Normal Form (CNF) 

o Pushdown Automata (PDA) 
▪ Formal definition 
▪ Given a language, generate a PDA to recognize the language 
▪ Given a PDA, describe the language it recognizes 
▪ Equivalence with CFGs (CFG->PDA, PDA->CFG conversions) 

o Proving closure properties (union, concatenation, star, etc. by modifying grammars or modifying PDAs) 

• Non-Context-Free Languages 
o Proving using the Pumping Lemma, proof by contradiction 
o Proving via closure properties (union, concat, *) and proof by contradiction 

 

PREVIOUS TOPICS – EXAM 1 

• Discrete Math Review 
o Sets 
o Sequences (Tuples) 
o Functions and Relations 
o Graphs 
o Strings and Languages 
o Boolean Logic 
o Proofs 

▪ Direct 
▪ Indirect 
▪ Contradiction 
▪ Induction 
▪ Construction 

• Regular Languages (those that can be recognized by DFAs, NFAs, or written as regular expressions) 

• DFAs 
o Given a language, construct the DFA 
o Given a DFA, state the language it recognizes 
o Formal definition as a tuple 

• Union, Concatenation, * 
o Closure of regular languages (know the proofs) 

• Closure of regular languages under other operations such as reverse and perfect shuffle 
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• NFAs 
o Given a language, construct the NFA 
o Given an NFA, state the language it recognizes 
o Converting NFAs to DFAs 
o Formal definition as a tuple 

• Regular Expressions 
o Given a regular expression, state its language 
o Given a language, create a regular expression  
o Converting regular expressions to NFAs 
o Converting DFAs to regular expressions 
o Converting DFAs to regular expressions 
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Post’s Correspondence Problem 
 

P = {[t1 / b1], [t2 / b2], … [tn / bn]}  // set of tiles with a string on top and a string on bottom 

 

PCP = {<P> | P is a set of tiles and there exists a match where the sequence of t’s match the sequence of 

b’s}  

 

Activity 18: PCP Example 
Find a match of these tiles. Note that a match does not need to use all tiles and each tile can be used 

more than once in a match. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find a match of these tiles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

ca 

a 

ab 

ca 

a 

abc 

c 

 

 

 

 

 

 

 

 

 

 

a 

abc 

c 

a 

bc 

b 

bb 

c 

ba 

a 
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Theorem: PCP is undecidable 
 

Proof idea: Reduce from ATM. We’ll use computational histories of M on w to construct dominos (similar 

idea as ALLCFG). The match in the PCP problem will be precisely the series of configurations where M 

accepts w.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The only difficult step is constructing the tiles given M and w. Instead of constructing tiles for PCP right 

now, we’ll construct tiles for a simpler problem. 

 

MPCP = modified PCP = {<P’> | P’ is an instance of PCP and the match starts with the first domino listed 

in P’} 

 

To create dominos for MPCP: 

 

1. If w = ε, use _ instead of w as the input symbol. 

2. Put [# / #q0w1w2w3…wn#] as the first tile [t1 / b1] in P’. 

 Note: This tile represents the starting configuration of M on w. Note that this tile alone could 

  not create a match since the top just has # and the bottom as at least #q0w1#. 

3. Create tiles to represent TM head motion to the right. 

 For every a, b ε Γ and every q, r ε Q where q != qreject: 

  if δ(q, a) = (r, b, R) put [qa / br] into P’. 

 

 Note: This tile represents transitions in the form: 

 

  

   q          a -> b, R            r 

 

 

 
  

 

M 

w 

Construct 

tiles using M 

and w 

Run decider 

for PCP 
accepts 

T 
accept 

F 

reject 
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4. Create tiles to simulate head motion to the left. 

 For every a, b, c ε Γ and every q, r ε Q where q != qreject: 

  If δ(q, a) = (r, b, L) put [cqa / rcb] into P’ for every c in Γ 

 

 Note: This tile represents transitions in the form: 

 

  

   q          a -> b, L            r 

 

 

 

5. Create tiles to represent tape locations not adjacent to the head of the TM. 

 For every a ε Γ, put [a / a] into P’. 

 

 Note: This tile represents characters in strings away from the head of the TM. 

 

6. Create tiles to mark separations between configurations. 

 Put [# / #] and [# / _#] into P’ where _ represents blank tape cell. 

 

 Note: These tiles will delimit each configuration of M on w. 

 

7. Create tiles to represent continuation of a match after M accepts w. 

 For every a ε Γ, put [aqaccept / qaccept] and [qaccepta / qaccept] into P’. 

 

 Note: These tiles represent continuing to move head to the right after accepting. 

 

8. Create tiles to represent final accept state at the end of the configurations. 

 Put [qaccept## / #] into P’. 

 

 Note: This tile is the final tile of a match. 

 

We now have tiles for the MPCP problem.  

 

---------------------------------------------------- 
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Let’s look at an example of converting a TM M and string w to MPCP tiles. 

 

 

Assume M is a TM for {02^N | N >= 0}: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s assume w = 00. 

 

Following the construction in the proof: 

 

2.     // start configuration 

 

 

3.     // transitions to right 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

0 -> _, R 

x -> R 

_ -> R 

0 -> L, x -> L 

0 -> x, R 

_ -> L x -> R 

0 -> x, R 0 -> R 

x -> R 

_ -> R 

_ -> R 

x -> R 

_ -> R 

qaccept 

qreject 

q1 q2 

q5 

q3 

q4 

# 

#q100# 

q10 

_q2 

q2x 

xq2 

q20 

xq3 

q3x 

xq3 

q30 

0q4 

q1_ 

_qreject 

q1x 

xqreject 

q2_ 

_qaccept 

q4x 

xq4 

q40 

xq3 

q5_ 

_q2 

q4_ 

_qreject 
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4.    // transitions to left 

 

 

 

 

 

 

 

 

 

 

5.     // tape symbols 

 

 

 

 

6.    // delimiters 

 

  

 

 

7.    // accepting continuations 

 

 

 

 

8.    // file tile in match 

 

 

 

 

So, what’s the match? We know M accepts w, so we should be able to find a match. 
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---------------------------------- 

Back to proof: 

 

To convert MPCP to PCP, we will put * markers on the tiles. 

 

In MPCP, suppose the start tile is: 

 

 

 

 

Then, we’ll create the following tile for PCP: 

 

 

 

 

 

In MPCP, for all other tiles besides the start tile: 

 

  -> 

 

 

 

Create end tile for match in PCP: 

 

 

 

 

 

Now, any match must start with   and end with  

 

 

 

which is exactly the same match we have from MPCP, so the first tile in the match is still the start 

configuration of M on w. 

 

_qaccept 

qaccept 

# 

# 

qaccept## 

# 

t1 

b1 

*t1 

*b1* 

tk 

bk 

*tk 

bk* 

*$ 

$ 

*t1 

*b1* 

*$ 

$ 
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We have the full proof now. Assume there is a decider D for PCP. Reduce ATM to PCP by constructing tiles 

for MPCP as above. Then convert the MPCP tiles to PCP tiles as above. If D accepts, the tiles form a 

match, so M accepts w. If D rejects, the tiles do not form a match, so M does not accept w. We have a 

contradiction, so PCP must be undecidable. 

  

 
  

 

M 

w 

Construct 
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MPCP 

Construct 
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accept 
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What other important problems are undecidable? 
 

By Rice’s Theorem, any set of machines or computers with a certain set of strings that are accepted or 

certain behavior when machine/program runs. 

 

Determining the minimum airline trip cost with no restrictions on route or number of stops. 

 

Virus detection – {<P> | P is a program that would cause a file on the host computer to be infected} 

 Note: similar to determining program behavior when it runs 

 

Vulnerability detection – {<P> | P is a program such that on some input w, running P on w leads to a 

security compromise} 

 Note: determining program behavior when it runs 

 

Determining if a grammar is ambiguous – {<G> | G is a CFG and is ambiguous} 

 Note: reduction from PCP 

 

 

But, wait, there are companies that sell/produce software that solves these problems!! 

• Orbitz, Expedia, Travelocity, etc. 

• McAfee, Symantec, etc. 

• Fortify Software, Aspect Security, PolySpace Technologies, Secure Software, etc.  
 

What gives? 

 

Undecidable means that there is no program / no algorithm that: 

 (a) ALWAYS gives the correct answer and 

 (b) ALWAYS halts/terminates 

 

What if we have to give up just one property? Which one is acceptable? Can’t really give up (b), so must 

give up (a). Giving up (a) means that the price may be cheap but not the cheapest for airlines. Giving up 

(a) means that antivirus software may give the wrong answer (say P is a virus when it is not, say P is safe 

when it is). We just get it right some of the time.  
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Next Topic: Complexity Theory 

How long does it take a Turing Machine to Decide?
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Now we care about how *long* a TM takes to decide, given the length of the 

input string (Complexity) 
 

This should be review from Data Structures. 

 

Questions:  

1. What is the big-O running time of selection sort? 
 

 

 

2. What is the big-O running time of merge sort? 
 

 

 

3. What is the big-O running time of binary search? 
 

 

 

 

 

Now, we will do our complexity analysis with respect to the number of steps (transitions) a TM makes in 

the worst case given input string w with length |w|. 

 

L  = {ambm | m >= 0} 

 

What could the TM look like? 
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On input w: 

1. Scan across to see if input is in form a*b*. If not, reject. 
2. While a’s and b’s on tape: 

a. Scan across, marking an a and b each time 
3. If a’s remain after b’s are marked or b’s remain after a’s are marked, reject. If no unmarked 

symbols found, accept. 
 

How much *time* does the TM take? 

 

 

 

 

 

 

 

definition: Assume M is a TM that is a decider. Then the running time of M is the function f: N -> N 

where f(n) is the maximum number of steps that M uses on any input of length n. 

 

 

 

What is the running time of above TM? 
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Activity 19: Running Times and Complexity Class P 
 

Definition: Assume M is a TM that is a decider. Then the running time of M is the function f: N -> N 

where f(n) is the maximum number of steps that M uses on any input of length n. 

 

Definition: Big O: Let f and g be functions such that f: N -> R+ and g: N -> R+. We say that f(n) = O(g(n)) if 

positive integers c and n0 exist such that for every integer n >= n0, f(n) <= c*g(n). g(n) is an upper bound 

for f(n). Intuitively, think of f(n) <= g(n) if we disregard differences up to a constant factor. 

 

Exercise 1: Assume the TM running time is f(n) = 4n3 + 6n2 + n + 5. Find g(n) such that f(n) is O(g(n)): 

 

 

 Can g(n) be n2?  YES  NO 

 

 Can g(n) be n?  YES  NO 

 

 Can g(n) be n * lg n? YES  NO 

 

 Can g(n) be n3?  YES  NO 

 

 

Definition: Little o gives us a strict asymptotic upper bound.  

 

f(n) = o(g(n)) if lim (n->inf) [f(n)/g(n)] = 0. 

f(n) = o(g(n)) if for any real number c > 0, a number n0 exists where f(n) < c*g(n) for all n >= n0. 

 

Exercise 2:  

 

 Is n = o(n*lg n)?  YES  NO 

 

 Is 5n = o(n)?  YES  NO 

 

 Is sqrt(n) = o(n)? YES  NO 

 

 Is n log n = o(n2)? YES  NO 

 

A note about logs: We usually just write lg in computer science and assume it is base 2, since the base 

of the log does not matter in terms of asymptotic bounds, since 

 

logbn = (log2n / log2b) so the log2b part just becomes a constant, which we disregard. 
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Activity 19 continued 
 

Exercise 3: The following functions could represent the running times of Turing Machines. It is important 

to know how to rank these in terms of how quickly (or slowly) the functions grow, so you know if your 

TM (algorithm) is fast or slow.  

 

Arrange the functions so that they are in order from slowest-growing (best running time) to fastest-

growing (worst running time). 

 

2lg n 

n3 

n 

n lg n 

2n 

1 

sqrt(n) 

n! 

lg(lg n) 

lg n 

nn 

n*2n 

n2 

lg(n!) 
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Activity 20: Re-Consider L  = {ambm | m >= 0} 

 

1. Can you find a single-tape deterministic TM that decides faster than O(N2) where m+m = N? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Assume your TM can have two tapes. How fast can you make a TM for this language? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that in computability theory, a single tape TM and a multitape TM had the same computability 

power – both can be used to show a language is decidable or recognizable. But, there’s a difference in 

complexity theory!! 
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Class P 
 

P = class of languages that can be decided in polynomial time on a deterministic single tape TM. 

 

P = U_k TIME(nk). 

• we care about P because these are the problems that are efficiently solved by a computer. 
 

Show PATH = {<G, s, t> | G is a directed graph that has a path from s to t} is in P. 

 

 

 

 

 

 

 

To do this, we must show 2 things:  

 1) PATH is decidable 

 2) PATH’s TM runs in poly time 

 

Create TM M that decides PATH. 

On input <G, s, t>: 

 1. Check that <G, s, t> is in proper form. If not, reject. 

 2. Mark node s in vertex list of G 

 3. Repeat until no new nodes are marked: 

  a. Scan edges of G. If (a,b) is an edge and a is marked and b is unmarked, mark b. 

 4. If t is marked, accept. Otherwise, reject. 

 

 

Now consider the running time. Let n be the number of vertices and m be the number of edges, so input 

string length is n + m + 2. Call the input string length N. 

 

Running time: 

 1. O(N) to check format 

 2. O(N) to search for and mark vertex s in the vertex list 

 3. O(N*N) to mark new nodes in vertex list (for each node, need to scan edge set) 

 4. O(N) to search for and find vertex t in the vertex list 

 

Overall running time is: O(N2) 

 

Because there is a deterministic single-tape TM that decides PATH in O(N2) time, PATH is in P.
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Activity 21: Show that CONNECT = {<G> | G is a connected undirected graph} is 

in P. 
 

Create TM M that decides CONNECT. Hint: this is similar to PATH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Running-time of the TM with respect to length N of the input string: 
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Theorem: P is closed under union. 
 

Proof: Assume there are two languages, A and B, that in complexity class P. Because they are in P, there 

exists a deterministic TM M1 that decides A in polynomial time Nk. There exists a deterministic TM M2 

that decides B in polynomial time Np. We can create a deterministic TM M3 that decides A U B as 

follows: 

 

On input w: 

 1. Run M1 on w. If it accepts, accept. If not, go to step 2. 

 2. Run M2 on w. If it accepts, accept. If not, reject. 

 

 

Running time: The runtime of step 1 is Nk. The runtime of step 2 is Np. The total runtime is Nk + Np = 

Nmax(k,p). So, the runtime of M3 is polynomial. So, A U B is in complexity class P. 
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ACNF 
 

Theorem: Every CFL is in P. 

 

Proof idea: Convert CFL to CNF form (poly time algorithm: 4 steps, each step modifies at most all rules). 

Then decide ACNF = {<G, w> | G is a grammar in CNF that generates w} in poly time with dynamic 

programming. 

 

TM for ACNF: 

On input <G, w> where G is in CNF: 

1. If w = ε and S->ε, accept. 

2. For i = 1 to n: // fill in diagonal entries (representing substrings of length 1) 

a. For each variable A: 

i. test whether A -> wi is a rule. If so, put A in entry T(i,i) 

3. For L = 2 to n: // L is the length of the substring 

a. For i = 1 to n-L+1: // i is first position in substring 

i. Let j = i + L – 1 // j is last position in substring 

ii. For k = i to j-1: // k is the split position of the two substrings 

1. For each rule A->BC 

a. If T(i,k) = B and T(k+1,j) = C, put A in T(i,j) 

4. If S is in T(1,n), accept. Otherwise, reject. 

 

 

Example: 

S -> SF | a 

F -> AS 

A -> CG | SS | CS | a 

G -> CA 

C -> b 

 

w = abaa 

 

Step 1: w is not ε, so keep going. 

Step 2: fill in diagonals: 

 

   1   2   3   4 

1 
2 
3 
4 

S, A    

 C   

  S, A  

   S, A 

 

T(1,1) = S, A since w1 = a and S->a and A->a 
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T(2,2) = C since w2 = b and C->b 

… 

 

Step 3: 

For L = 2 to 4 

 For i = 1 to n-L+1 

  j = i+L-1 

  For k = i to j-1 

 

L i J k Action 

2 1 2 1 T(1,1) = S/A, T(2,2) = C so there is no rule -> SC or AC 

2 2 3 2 T(2,2) = C, T(3,3) = S/A. Since A->CS, T(2,3) = A and G-
>CA, T(2,3) = G 

2 3 4 3 T(3,3) = S/A, T(4,4) = S/A. Since A->SS, T(3,4) = A. Since 
F->AS, T(3,4) = F. 

3 1 3 1 T(1,1) = S/A, T(2,3) = A/G so there is no rule 

3 1 3 2 T(1,2) = empty, T(3,3) = S/A so there is no rule 

3 2 4 2 T(2,2) = C, T(3,4) = A/F. Since G->CA, T(2,4) = G 

3 2 4 3 T(2,3) = A/G, T(4,4) = S/A. Since F->AS, T(2,4) = F 

4 1 4 1 T(1,1) = S/A, T(2,4) = G/F. Since S->SF, T(1,4) = S 

4 1 4 2 T(1,2) = empty, T(3,4) = A/F so there is no rule 

4 1 4 3 T(1,3) = empty, T(4,4) = S/A so there is no rule 

DONE     

 

Table: 

 

   1 a  2 b  3 a  4    a 

1 
2 
3 
4 

S, A   S 

 C A, G G, F 

  S, A A, F 

   S, A 

 

Step 4: Since S is in T(1,4), we accept. 
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Activity 22: Practice with filling in table for A_CNF 
 

1. Try the algorithm for w = aaab. Complete the table below. 

 

G: 

S -> SF | a 

F -> AS 

A -> CG | SS | CS | a 

G -> CA 

C -> b 

 

   1 a  2 a  3 a  4   b 

1      a 
2      a 
3      a 
4      b 

    

    

    

    

 

 

2. Try the algorithm for w = bbab. Complete the table below. 

 

   1 b  2 b  3 a  4   b 

1     b 
2     b 
3     a 
4     b 

    

    

    

    

 

 

3. Try the algorithm for w = abaa. Create the table below. Note the dimensions of the table.  
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Class NP, Nondeterministic Polynomial Time 
 

NTIME(t(n)) = {L | L is decided in time O(t(n)) by a nondeterministic TM} 

 

NP = Uk NTIME(O(nk)) 

 

So, languages that can be decided by a ND TM in poly time are in the complexity class NP. Another way 

to look at NP is the following: 

 

verifier: A verifier for a language A is an algorithm V, where 

 A = {w | V accepts <w,c> for some string c} 

 

What does this mean? Given a certificate c (solution), we can verify that w is in A. A polynomial time 

verifier runs in poly time with respect to the length of w. So, if A has a poly time verifier, it is in NP. 

 

 

 

 

 

 

Example of verifier for HAMPATH: 

N’: On input <<G, s, t>, c>:   // c is the list of ordered vertices for the path 

1. Test whether c is a list of all vertices in G. If not, reject. 

2. Test whether successive pairs in c are edges in G. If not, reject. 

3. If both 1 and 2 pass, accept. 

 

Running time: 

1: O(n) // if dictionary 

2: O(n) // if dictionary 

3: O(1) 

 

So, here’s how I think of it: The certificate c is a potential solution for the input to be in the language. So, 

given a potential solution, can we see if it is correct in poly time? 
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Clique is in NP 
 

CLIQUE = {<G, k> | G is an undirected graph with a k-clique} 

[Note: a clique of size k is a subset of k vertices such that there are edges between all pairs of the k 

vertices] 

 

Show that CLIQUE is in NP by (a) building a ND TM and (b) building a poly time verifier. 

 

(a) ND TM: 

On input <G,k>: 

1. ND select a subset G’ of k nodes 

2. Test if G contains edges connecting all pairs of nodes in G’ 

3. If so, accept. If not, reject. 

 

time: 

1. O(|V|)  // select k from |V| vertices 

2. O(k2 * |E|) // k2 pairs of vertices and check each against list of edges 

3. O(1) 

So, it is poly time with respect to the length of the input. 

 

(b) Verifier V: 

On input <<G, k>, c>: 

1. Test if c is a subset of k nodes of G 

2. Test whether G contains edges connecting pairs of nodes in c 

3. If both 1 and 2 pass, accept. If not, reject. 

 

time: 

1. O(|V|) // check if there are k nodes in c and k are distinct 

2. O(k2 * |E|) 

3. O(1) 
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Activity 23: Subset Sum is in NP 
 

SUBSET_SUM = {<S, t> | S = {x1, x2, … xk} and for some {y1, y2, …yj} that is a subset of S, we have the sum 

of yi’s is equal to t} 

 

Let S = {2, 6, 12, 7, 9, 4, 6, 5} 

t = 32 

Is <S, t> in SUBSET_SUM? yes. 12 + 9 + 7 + 4 

 

Show that SUBSET_SUM is in NP.  

 

a) Create solution with ND TM. Remember to analyze its runtime. 

 

On input <S, t>: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Create solution with a polynomial time verifier 

On input <<S, t>, c>:   // c is a subset of S  
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Questions and Reductions 

 
Consider the complement of SUBSET_SUM. Is this in NP? We would need to verify that a subset is not 

present, which is harder to verify that a subset is present. 

 

 
complexity class: coNP = {L | the complement of L is in NP}. 

 

  We don’t know if coNP is different than NP. 

 

 

 

Is P == NP? 

  We don’t yet know, but we believe they are different. No poly-time deterministic 

algorithms have been found for languages in NP and there are lots of languages in NP.  

 

 

Back to reducibility: now we’ll use the technique to show a language is in a certain complexity class. 

 

Definition: f: ∑* -> ∑* is a poly time computable function if some poly time TM M exists that halts with 

f(w) on the tape given w as input. 

 

 

  A     B 

   w    f(w) 

 

 

A <=p B: A is poly time reducible to B if a poly time computable function exists where for every w, w is in 

A if and only if f(w) is in B. 

 

Theorem: If A <=p B and B is in P, then A is in P. 

Proof: Assume B is in P with poly time TM M. Assume A is poly time reducible to B with TM N. Then 

create a poly time TM O for A that does the following: Runs N on w to produce f(w). Runs M on f(w). If M 

accepts, accept. If not, reject. Time: N runs in poly time and M runs in poly time, so the sequence of the 

machines is poly time. 
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NP-Complete Languages 
 

Definition: A language B is NP-complete if: 

1. B is in NP 

2. Every A in NP is poly time reducible to B  // this property is called NP-hard 

 

 

Class NP: 

 

B 

 

 

 

Why is this important?  If we could solve B in poly time, then we could solve every other language in NP 

in poly time!! 

 

 

 
Theorem: If B is NP-complete, C is in NP, and B <=p C, then C is NP-complete. 

 

All → B ---------(poly time)---→ C 

 

 
 

 

Once we know a problem is NP-complete, we can use it as language B to show a reduction from B to C 

to show C is NP-complete. (kind of like undecidability…there we kept adding to our collection of 

undecidable languages and could use any one of them to create a reduction) 

 

 

But, how do we find the “first” NP-complete problem/language…. 
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SAT is NP-complete 
 

SAT = {<φ> | φ is a satisfiable Boolean formula} 

 

Cook-Levin Theorem: SAT is NP-complete. 

Proof: 

We want to show that SAT is NP-complete. To do this, we must show 2 things: 

1. SAT is in NP 

2. Every language A in NP is poly time reducible to SAT 

 

To show 1: 

Build a ND TM N: On input <φ>: 

1. ND choose truth values for each variable 

2. Check if φ is true with the assignment of truth values 

3. If 2 passes, accept. Otherwise, reject. 

Running time:  

1. O(n) 

2. O(n) 

3. O(1) 

 

To show 2: 

Let A be in NP. Then, A has a ND TM N that decides A in O(nk) time for some constant k.  

 

We’ll reduce A to SAT. 

 

 

 

 

 

 

 

 

In other words, we are creating a function f:A -> SAT such that w is in A if and only if f(w) is in SAT. 

Idea: We will use configurations of N on w on some branch of computation to create a Boolean formula. 

 

Definition of tableau: 

# qow1w2w3….. _ _ _... _ # 

#w1q1w2w3….. _ _ _ … _ # 

….. 

… 

#   # 

  
 

w 

N 
φ 

In SAT? accept 

reject 

T 

F 

Build φ 

given w 

and N 
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The height of this tableau is order nk since we know the TM runs in poly time on some branch. The width 

of the table is nk (we’ll just pad _ after each configuration). The first row is the starting configuration of 

the branch of N on w. Each successive row is the next configuration of the machine on w. If any row 

contains qaccept, this is an accepting tableau. So, the problem of determining if N accepts w can be turned 

into “Does an accepting tableau for N on w exist?” 

 

We’ll convert the entries of the tableau into variables. 

 

Let C = collection of tableau symbols = Q U Γ U {#} 

Boolean variables:  xi,j,s
 = 1 if cell[i,j] = s 

   Xi,j,s = 0 if cell[i,j] != s 

 

Φ = φcell
 && φstart && φmove && φaccept 

 

1. φcell represents that each cell contains exactly one symbol. 

 

Aij = xi,j,s1 || xi,j,s2 || xi,j,s3 …. || xi,j,s|C|  // |C| is the number of different tableau symbols 

      // this expression handles at least one symbol is 

      // in cell[i,j] 

 

Bij = (!xi,j,s1 || !xi,j,s2) && (!xi,j,s1 || !xi,j,s3) … && (!xi,j,s|C|-1 || !xi,j,s|C|) 

      // includes all pairs where at most one symbol is on 

      // note that if the cell has two symbols, then the 

      // corresponding clause is false, causing Bij to be false 

 

Φcell =           (Aij && Bij) 

 1 <= I <= n
k 

 1 <= j <= n
k 

 

2. Φstart will represent the starting configuration in the top row. 

 

Φstart = x1,1,# && x1,2,q0 && x1,3,w1 && … && x1,n+2,wn && x1,n+3,_ && … && x1,n
k
,# 

 

3. Φaccept will represent an accepting configuration, so qaccept is anywhere in the row. 

 

Φaccept =  xi,j,qaccept 

 1 <= i <= n
k 

 1 <= j <= n
k 
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4. Φmove will represent legal TM moves. 

 

Assume we have the following transition in the ND TM N: 

 

 

 

 

What are the legal tableau windows of size 3 x 2? 

 

following b->c, L      following b->a, R         following a->b, R 

 

 

 

on left side of tableau      following b->c, L        following b->c, L 

 

 

 

 

Many more, but this serves as examples. 

Φmove =   Lij 

      1 <= i < n
k 

      1 < j < n
k 

 

Lij = 3x2 legal window with top-middle location at row i and column j. 

Lij = xi,j-1,a1 && xi,j,a2 && xi,j+1,a3 && xi+1,j-1,a4 && xi+1,j,a5 && xi+1,j+1,a6 

 // where window is: 

 

 

 

 

That concludes the process for creating φ.  

 

Now, we need to determine that this function to map A to SAT is polynomial time. Let’s look at each part 

separately. 

 

1. φcell: The number of variables in Aij is |C|. The number of variables in Bij is 2|C|2. But C is constant size 

set, depending on the TM only and not on the length of w. Given the size of the tableau is n2k, then the 

size of φcell is O(n2k) = O(n2k). 

 

2. φstart: The number of variables is the size of the top row, which is O(nk). 

 

3. φaccept: The number of variables is the size of the tableau, which is O(n2k). 

a q1 b 

q1 a c 

  q2 q1 

b->c, L 

b->a, R a->b, R 

a q1 b 

q2 a c 

a q1 b 

a a q2 

a a q1 

a a b 

# b a 

# b a 

a b a 

a b q2 

b b b 

c b b 

a1 a2 a3 

a4 a5 a6 
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4. φmove: The number of variables in each window is 6 and the number of windows is O(n2k). 

 

The total running time to convert language A with TM N to a Boolean formula is O(n2k) which is 

polynomial time. 

 

Since we have shown that SAT is in NP and there is a poly time reduction from any A in NP to SAT, SAT is 

NP-complete. 
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Review: To show a language is NP-complete 
 

In general, to show A is NP-complete: 

1. Show A is in NP (build a ND TM that decides in poly time) 
2. Given B is NP-complete, show that B <=p A. 

a. Provide function F:B->A 
b. Show that if w is in B, F(w) is in A  
c. Show that if F(w) is in A, w is in B (b and c show reduction works) 
d. Show that F is a poly time function 

 

 

 

 

 

 

 

 

Coming up with the functions to map B to A can take a lot of creativity and clever thinking, especially 

when the languages involve different types of structures (such as Boolean functions, graphs, integers).   

Must do all 

parts for a 

complete NP-

complete proof 
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3SAT is NP-Complete 
 

Earlier, we showed that SAT is NP-complete. SAT is a language of Boolean formulas that can have 

variables connected with ANDs and ORs and variables can also be negated. 3SAT is a language where the 

formulas have a specific structure. The specific structure is helpful in showing that other languages are 

NP-complete. 

 

3SAT: Boolean formula that is satisfiable in 3CNF (conjunctive normal form) 

 3 is for the number of variables (regular or negated) per CLAUSE 

 Each CLAUSE has variables connected via OR 

 Each CLAUSE is connected to other clauses via AND 

 

Example of format of a 3SAT instance: 

(x || y || !z) && (!x || z || !y) 

 

What can we set x, y, and z to (true or false) such that the formula is satisfiable? 

 

 x = _______, y = __________, z = __________ 

 

 

To show 3SAT is NP-complete: 

 

1. We need to show that 3SAT is in complexity class NP 
Easy – we use same TM that we created for SAT 

 

2. Build a poly function F: SAT -> 3SAT 
Turn any Boolean formula into the constrained 3-cnf form 

 

Step 1: Apply distribution laws to get into conjunctive normal form 

 Example: a || (b &&c) -> (a || b) && (a || c) 

 Example: (a && b) || (c && d) -> ((a && b) || c) && ((a && b) || d) -> 

   ((a || c) && (b || c)) && ((a || d) && (b ||d)) 

 

Step 2: Get 3 variables per clause 

 Case 1: if clause is (x) [just one variable], convert to (x || x || x) 

 Case 2: if clause is (x || y), convert to (x || y || y) 

 Case 3: if clause (x || y || z), keep 

 Case 4: if clause has more than three variables (a1 || a2 || … || ak) becomes 

  (a1 || a2 || y1) && (!y1 || a3 || y2) && (!y2 || a4 || y3) && … 

  (!y_(k-3) || a_(k-1) || ak) 
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These transformations did not change the satisfiability of the formula, so the original formula in SAT is 

satisfiable if and only if the transformed formula in 3SAT is satisfiable. 

 

 

F runs in poly time: 

 

Step 1: apply distribution law takes O(N2) time 

 

Step 2: cases 1/2/3 take constant time per clause. Case 4 takes O(N2) time 

 

Total runtime is O(N2). 

 

Since we have a poly time transformation from SAT to 3SAT and we know that 3SAT is in NP, 3SAT is NP-

complete.  
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Activity 24: 3SAT practice 

 
Part A: Are the following Boolean formulas in 3SAT format? 

 

 (x || y || !x) && (z || a || a)   yes  no 

 

 (x || y) && (!x || !y || z)   yes  no 

 

 x && !y || z     yes  no 

 

 x || y || z && a || (b && !c)   yes  no  

 

Part B: Are the following Boolean formulas in the 3SAT language? 

 

 (x || y || !x) && (!y || !y || !y)   yes  no 

 

 (x || x || x) && (!x || !x || !x)   yes  no 

 

 (x || y) && (!x || y || z)    yes  no 

 

 
Part C: Use the function to convert SAT Boolean formula to equivalent 3SAT Boolean formula shown 

below. 

 

Original Boolean formula format for SAT: 

 

(a || b || c || !d) && (!c ||  d && e) 

 

Remember levels of operations: negation before AND before OR, so you may want to parenthesize the 

expression to help with order of operations. 

 

Convert to Boolean formula format for 3SAT: (do distribution before making 3 per clause) 
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SUBSET_SUM is NP-complete 
 

SUBSET_SUM = {<S, t> | S is a set of integers such that there is a subset S’ of S where members of S’ add 

to t} 

 

Show that SUBSET_SUM (SS) is NP-complete. 

 

Proof: 

 

1. We showed SS is in NP during lecture earlier. But, as a review, we can ND choose a subset S’ of S. Add 

the numbers together and accept if they add to t. O(n). 

 

2. We need to show some NP-complete problem has a poly time reduction to SS. We’ll choose 3SAT to 

use in the reduction. Idea: We’ll create two integers for each variable in Φ and we’ll rig it so only one of 

the two integers can participate in the subset of S that sums to t.  

 

F(Φ) =  

Let L = number of variables in Φ. Let K = number of clauses in Φ. 

 

1. For each variable xI in Φ create two numbers yi and zi to include in set S. Note that the numbers are 

written in decimal (left to right) and the 0/1 means that the value is 1 for yi if xi is in clause cj and the 

value is 1 for zi if !xI is in clause cj. 

 

2. For each clause, we create two numbers gj and hj where the clause position has a 1 for clause cj and a 

0 everywhere else. 

 

 1 2 3 4 … L  c1 c2 c3 … cK 

y1 1 0 0 0  0 0/1 0/1 0/1  0/1  

z1 1 0 0 0  0 0/1 0/1 0/1  0/1 

y2 0 1 0 0  0 0/1 0/1 0/1  0/1 

z2 0 1 0 0  0 0/1 0/1 0/1  0/1 

y3 0 0 1 0  0 0/1 0/1 0/1  0/1 

z3 0 0 1 0  0 0/1 0/1 0/1  0/1 

… 

yL 0 0 0 0  1 0/1 0/1 0/1  0/1 

zL 0 0 0 0  1 0/1 0/1 0/1  0/1 

------------------------------------------------------------------------------------------------------------------- 

g1 0 0 0 0  0 1 0 0  0 

h1 0 0 0 0  0 1 0 0  0 

g2 0 0 0 0  0 0 1 0  0 

h2 0 0 0 0  0 0 1 0  0 
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… 

gK 0 0 0 0  0 0 0 0  1 

hK 0 0 0 0  0 0 0 0  1 

 

 

3. Create t to be: 

 1 1 1 1 … 1 3 3 3 …. 3 

 

Here is an example using this function on a specific Boolean formula. 

Let Φ = (x1 || !x2 || x3) && (x2 || !x3 || x1) && (x1 || !x1 || x2) && (x3 || x2 || !x1) 

 

The numbers created are: 

 1 2 3 c1 c2 c3 c4 

y1 1 0 0 1 1 1 0 

z1 1 0 0 0 0 1 1 

y2  1 0 0 1 1 1 

z2  1 0 1 0 0 0 

y3   1 1 0 0 1 

z3   1 0 1 0 0 

g1    1 0 0 0 

h1    1 0 0 0 

g2     1 0 0 

h2     1 0 0 

g3      1 0 

h3      1 0 

g4       1  

h4       1 

 

t =  1 1 1 3 3 3 3 

 

We need to show the function F is such that Φ is in 3SAT if and only if F(Φ) is in SS. 

 

-> Assume Φ is satisfiable. For each variable xi in Φ, choose yi if xi is assigned true in the satisfying 

assignment and choose zi is xi is assigned false. The left L columns of numbers should sum to 1 for each. 

In the upper-right hand part of the table, each of the right K columns sums between 1 and 3 since 1 to 3 

variables are true in the satisfying assignment in Φ. Select enough of the gj and hj integers to have the K 

right-most columns each sum to 3. Thus, there is a subset of numbers that sums to t. 

 

<- Assume F(Φ) is in SS. So, there is a subset S’ of integers that sums to t. Since at most 5 1’s appear in any 

column, there is no carry-over with the addition. To get a 1 in the first column, either y1 or z1 is in S’ (but 

not both). To get a 1 in the second column, either y2 or z2 is in S’ (but not both). Etc for the left L columns. 

If the yi is in S’, set the variable xi to true in Φ. If the zi is in S’, set the variable xi to false in Φ. Because we 
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use at most gj and hj in the subset S’, there must be at least one 1 for each of the right K columns from the 

y and z integers. Therefore, at least one variable is assigned true per clause, so Φ is satisfiable. 

 

Now, we need to show the function F runs in polynomial time. 

 

1 and 2. Creating the yI and zi integers and gj and hj integers: The size of the table is (L + K) * (2L + 2K) 

which is O(n2). 

3. Creating t is size (L+K) which is O(n). 

 

Therefore, F runs in polynomial time with respect to the length of Φ. 
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Activity 25: Apply SUBSET SUM transformation 
 

As defined earlier: 

 

SUBSET_SUM = {<S, t> | S is a set of integers such that there is a subset S’ of S where members of S’ 

add to t} 

 

Let F: 3SAT -> SUBSET_SUM be the function defined in the coursepack and textbook. 

 

Show the result of applying F to the following boolean formula: 

 

(!x1 || x2 || !x3) && (!x2 || x3 || x4) && (x1 || !x2 || !x4) 

 

Set S: (hint: make a table) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target number t: (hint: really large decimal number) 

 

 

 

 

 

Which numbers form the subset of S that sum to t?  
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VERTEX_COVER is NP-complete 
 

VERTEX_COVER = {<G, k> | G is an undirected graph that has a k-node vertex cover} 

A vertex cover is a subset of nodes where every edge touches at least one of the nodes in the cover.  

 

Theorem: VERTEX_COVER (VC) is NP-complete. 

 

To show VC is in NP: 

Build a nondeterministic TM N: 

On input <G, k>: 

1. ND select k vertices of G and call set V’ 
2. Test if every edge of G contains a vertex in V’ 
3. If 1 and 2 pass, accept 

 

Running time: 

1. O(n) 
2. O(n2) if the edges and vertices V’ are both lists 
3. O(1) 

 

Thus, VC is in NP. 

 

To show 3SAT <=p VC: 

 

Idea: Need function F: Φ -> <G, k> 

Nodes will be variables of Φ and edges between x and !x will ensure that one or the other will be chosen 

for the vertex cover. The vertex cover will correspond to the true variables and the two variables per 

clause that could be false. Clauses will be grouped together as triangles to ensure that two of the three 

nodes are selected for the cover.  

 

F(Φ) = 

1. Let k = |V| + 2|C| where V is the set of variables in Φ and C is the set of clauses in Φ 

2. Construct the nodes/edges in G as follows: 

 

a. For each variable x in V, create  
 

 

 

b. For each clause (x || y || z) in C, create 
 

 

 

 

 x !x  

 

  

x 

y z 
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c. Add edges connecting the clause nodes (in b) to the corresponding nodes in the variable pairs 
(in a). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here is an example construction of G and k for a particular Boolean formula: 

Φ = (x1 || x2 || x1) && (!x1 || !x2 || !x2) && (!x1 || x2 || x2) 

 

 

 

 

 

 

 

 

 

 

k = 2 + 2*3 = 8 

For this example, the VC = {!x1 (from variable gadget), x2 (from variable gadget), x1, x1 (from clause 

gadget 1), !x2, !x2 (from clause gadget 2), !x1, x2 (from clause gadget 3)}. Note that the assignment of x1 

= 0, and x2 = 1 satisfies the original formula. 

 

Now, we need to show that F is a function such that Φ is satisfiable if and only if F(Φ) is in VC. Thus, we 

need to show both directions for the if and only if. 

 

-> Assume Φ is satisfiable. Put nodes corresponding to true variables of the paired nodes (either x or !x) 

into the vertex cover. Put the remaining two nodes from each clause not adjacent to the chosen variable 

nodes into the vertex cover. Thus, there are |V| + 2|C| nodes in the vertex cover. Then, <G, k> is in VC. 

 

 

  

  

 

 

 

 

z 

x 

y 

z 

!z 

!x 

!y 

x 

y 

 

  

 

  

 

  

    x1 !x1 x2 !x2 

x1 

x2 x1 

!x1 

!x2 !x2 

!x1 

x2 x2 
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<- Assume F(Φ) is in VC. The cover must include at least one node in each variable gadget to cover the 

edge between x and !x. Two nodes from each clause triangle must be in the vertex cover to cover the 

three edges. Just from these nodes alone, there are |V| + 2|C| nodes already in the cover, so we cannot 

add any more. Now take the clause gadgets and assign true to the variable not selected for the cover 

(since this node is attached to the variable gadget). This assignment of the variables from the variable 

gadget nodes in the vertex cover produces a satisfying assignment. Thus, Φ is in 3SAT. 

 

Now, we need to consider the running time of F: 

1. k = |V| + 2|C| so this is O(n) 

2a. For each variable in Φ, we create 2 nodes and 1 edge. O(n) 

2b and 2c. For each clause in Φ, we create 3 nodes and 6 edges (3 for the triangle and 3 to the variable 

gadgets). O(n) 

 

Therefore, we have a poly time function from SAT to VC, so VC is NP-complete. 
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Activity 26: Apply Vertex Cover Transformation 
 

VERTEX_COVER = {<G, k> | G is an undirected graph that has a k-node vertex cover} 

A vertex cover is a subset of nodes where every edge touches at least one of the nodes in the cover.  

 

Assume F: 3SAT -> VERTEX_COVER is the function shown above and the textbook. 

 

Apply F to the following Boolean formula: 

 

(!x1 || x2 || !x3) && (!x2 || x3 || x4) && (x1 || !x2 || !x4) 

 

 

Draw G here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k = ____________ 

 

 

This <G, k> is the string for the language VERTEX_COVER. Highlight the nodes that form a k-vertex cover.  
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CLIQUE is NP-complete 
 

CLIQUE = {<G, k> | G is an undirected graph with a k-clique} 

 

Proof: 

1) We showed earlier in class that CLIQUE is in NP by either constructing a ND TM to decide in poly 
time (ND choose k nodes, see if all k are connected to the other nodes) (O(n3)) OR constructing a 
poly time verifier: Given <<G, k>, c>: see if c contains k nodes of G, check to see that all c are 
connected to the others. (O(n3)) 

2) Now, we need to show that CLIQUE is NP-hard. We do this by reducing a different NP-complete 
problem to CLIQUE. Well, the only ones we know about right now are SAT and 3SAT. We’ll use 
3SAT. 

 

   F 

 

  Φ  <G, k> 

 

 

 

We need to create a function F that takes Φ and creates a graph G and number k such that if Φ is 

satisfiable, then G has a k-clique and if Φ is not satisfiable, then G does not have a k-clique. 

 

F(Φ) = 

Let k be the number of clauses in Φ. 

Let G be a graph with k groups of 3 nodes each where each group corresponds to one clause in Φ. Each 

node of G corresponds to a variable in Φ. Put edges in G between each pair of nodes such that: 

1) No edge is present between variables in the same clause 
2) No edge is present between any two nodes x and !x 

 
box is not part of formal proof, but shows example of reduction on a particular Boolean 
formula 

 

Here is an example construction of G and k for a particular Boolean formula: 

Φ = (x1 || x1 || x2) && (!x2 || x1 || !x2) && (x2 || x2 || !x1) 

 

Since Φ has 3 clauses, k = 3. 

G will be the following graph: 
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Now, we need to show that F is a function such that Φ is satisfiable if and only if F(Φ) is in CLIQUE. Thus, 

we need to show both directions for the if and only if. 

 

-> Assume Φ is satisfiable. Then, at least one variable in each clause is assigned true. Choose the set of 

variables, one from each clause, that are true and choose the corresponding nodes in G. These nodes 

form a k-clique in G since there are k clauses and each pair of nodes is joined by an edge since only xi or 

!xi can be true. 

 

<- Assume F(Φ) is in CLIQUE. Thus, the graph G generated by F has a k-clique. Since the graph was 

generated from Φ with k clauses, there must be one and only one node per clause that is in the k-clique. 

Choose these nodes and assign the corresponding variables in Φ to true. Since each clause is of the form 

(x || y || z), at least one variable per clause is assigned true, so Φ is satisfiable. 

 

Now, we need to show that F is a polynomial time function. 

 

1) k is the number of clauses, so this is a simple count of the length of Φ, and the running time is 
O(n) where n is the length of Φ 

2) The number of nodes created is 3*k, which is O(n). The maximum number of edges created is 
3*k*3*(k-1), which is O(n2). 

Therefore, the construction of <G, k> runs in O(n2), so 3SAT <=p CLIQUE. 

 

That concludes the proof. 

--------- 

 

Note: can create a transformation from Vertex Cover to Clique as well through creating a 

complementary graph of edges. That version is shown in the Algorithms course.  

 

 

 

   

 

 

 

x1 

x1 

x2 

!x2 

x1 

!x2 

x2 x2 !x1 
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Activity 27: Apply Clique Transformation 
 

CLIQUE = {<G, k> | G is an undirected graph with a k-clique} 

 

Assume F: 3SAT -> CLIQUE is the function shown above and the textbook. 

 

Apply F to the following Boolean formula: 

 

(!x1 || x2 || !x3) && (!x2 || x3 || x4) && (x1 || !x2 || !x4) 

 

 

Draw G here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k = _________ 

 

 

 

Identify the k-clique in the above graph.  
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Directed Hamiltonian Path is NP-complete 
 

HAM_PATH = {<G, s, t> | G is a directed graph with a path from s to t that goes through every vertex of G} 

 

Show that HAM_PATH (HP) is NP-complete. 

 

1. We showed HP is in NP during lecture earlier. A ND TM can select an ordering of vertices and then check 

to see that edges connect the successive pairs. This TM runs in O(n2) time with vertices and edges as lists. 

 

2. We will now show that 3SAT <=p HP. 

 

F(Φ) =  

Let K = # of clauses in Φ. 

Let L = # of variables in Φ. 

 

1. Create the following graph gadget for each variable in Φ: 

 

 

 

 

 

 

      …. 

 

 

 

 

  

 

where the middle string of nodes depends on K. 

 

 

         ….. 

 

   clause 1       clause 2 

 

 

2. Connect the diamond variable gadgets to each other with the top node as s and the bottom node as t. 

3. If xi is in clause cj, add edges from its interior string to a node cj as follows: 
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    clause cj 

 

 

  ….     ….. 

 

    

 

 

4. If !xi is in clause cj, add edges from its interior string to a node cj as follows: 

 

    clause cj 

 

 

  ….     ….. 

 

    

 

 

 

 

In total, the graph G and nodes s and t will look like: 

 

 

 

 

 

 

      …. 

 

 

 

 

 

 

 

 

 

 

      …. 

 

 

 

    

cj  

    

 cj 

 

     

 

     

 

s 
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    …. 

  

 

 

 

 

 

      …. 

 

 

 

 

Now, we need to show that Φ is in 3SAT if and only if F(Φ) is in HP. 

 

-> Assume Φ is satisfiable. If xI is true, we can use the detour going right to each clause node that xi is in. 

If xi is false, we can use the detour going left to each clause node in the other direction. Because Φ is 

satisfiable, each clause has at least one variable that is true, so we can get to each clause node and get 

through the entire chain of variables for each variable gadget. Thus, there is a path from s to t that goes 

through each node. 

 

<- Assume F(Φ) is in HP. Then, each variable gadget must be entered from the top and exit at the bottom. 

Either the path will go left or go right from the top node in each variable gadget. If the path goes left, then 

assign xi to true. If the path goes to the right, then assign xi to false. Each clause node must be part of the 

Hamiltonian path. If the path goes from the gadget for xi to clause node cj and goes back to a variable 

gadget xk for k != i, then this cannot be a Hamiltonian path as there is no way to get through the string of 

nodes for each variable gadget. Thus, the path must include entry to cj from some xi and exit from cj back 

to the same string in xi. Therefore, each clause has a true variable assignment, so Φ is in 3SAT. 

 

Now, we need to show that F runs in polynomial time. 

1 and 2. For each variable, we create 4 + 3K nodes and about the same number of edges. O(n2) 

3 and 4. For each clause, we create 1 node. O(n) 

 

Therefore, F runs in polynomial time so 3SAT <=p HP making HP NP-complete. 

  

     

 t 
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Activity 28: Apply Hamiltonian Path Transformation 
 

HAM_PATH = {<G, s, t> | G is a directed graph with a path from s to t that goes through every vertex 

of G} 

 

Assume F: 3SAT -> HAM_PATH is the function described above and in the textbook. 

 

Apply F to the following Boolean formula: 

 

(!x1 || x2 || !x3) && (!x2 || x3 || x4) && (x1 || !x2 || !x4) 

 

Draw <G, s, t> as the result of applying F. Note that this result is the input string for HAM_PATH: 

(Hint: lots of diamond gadgets) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlight the Hamiltonian Path of the resulting graph.  
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For More Information 
 

If you want to read about more NP-complete problems: 

Computers and Intractability: A Guide to the Theory of NP-Completeness 

By Michael S. Garey and David S. Johnson 

 

What’s NP-complete? 

• Satisfiablity of logic formulas (SAT, 3SAT) 

• Constraint problems (subset sum, knapsack problem) 

• Graph problems (ham path, vertex cover, clique, graph coloring, traveling salesman…) 

• Touches every area of computer science 
 

Can find exponential worst-case algorithms for problems that are NP-complete. 

 

In practice, some tips when working with NP-complete problems: 

• May find an algorithm that is fast on average, just exponential time in worst case 

• Go for approximation algorithms – may not get optimal solution, but can get close to the 
optimal with a faster approximation algorithm 

 

 

Remember, reduce the known NP-complete problem to the one you want to show is NP-complete!! 

 

After these lectures and HW 9: 

 

   SAT (lect) 

 

   3SAT (lect)  

 

CLIQUE (lect) U_SAT (hw) HAM_PATH (lect) SUBSET_SUM (lect) VERTEX_COVER (lect)  

 

  MAX_CUT (hw)  CONTAIN_SIMPLE_PATH (hw) 
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Activity 29: CS357 Last Day “Quiz” 

 
This course, Theory of Computation, introduced you to the tools and skills to characterize types of 

problems with regard to the computational model necessary to solve them. Some are “easy” or “hard” 

or “impossible to find a solution”.  

 

For each, indicate what kind of state machine (model of computation) would be necessary to solve that 

problem. 

 

DFA or NFA (Regular Languages) 

PDA (Context-free Languages) 

Turing Machine (Decidable Languages) 

No Machine (Undecidable Languages) 

 

Problem 1 

Input: Airport Name 

Output: Yes if # of e’s in the name is greater than the # of a’s in the name. Otherwise, answer is no. 

 

 Example:  Input: Portland, Output: No 

   Input: Los Angeles, Output: Yes 

 

Type of machine: ______________________________ 

 

Problem 2 

Input: Two airports, pricing schemes, and schedules of all airlines 

Output: Cheapest flight option (direct flight need not be cheapest) 

 

 Example: Input: Portland, OR and Orlando, FL 

   Pricing schemes for all airlines, routes of all airlines, 

   Restrictions on pricing for all airlines 

 

   Output: $392.10 on United going through San Francisco, 

   Chicago on flight classes U and T 

 

Type of machine: _______________________________ 
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Problem 3 

Input: Two airports, distances between any two airports in the world, airline routes 

Output: Shortest flight plan in terms of distance 

 

Example:  Input: Portland, OR and Modesto, CA 

  Output: Shortest flight plan: Portland to San Francisco, San 

  Francisco to Modesto (760 miles) 

 

Type of machine: ___________________________________ 

 

Problem 4 

Input: Airport name 

Output: Yes, if it has the substring “or” in it. Otherwise, no. 

 

Example: Input: Portland Output: Yes 

  Input: Los Angeles Output: No 

 

Type of machine: ____________________________________ 

 

Problem 5 

Input: Entire airline route map 

Output: Yes, if there is a tour. Otherwise, no. A tour consists of visiting every airport and no airport is 

visited more than once. 

 

 

Type of machine: _____________________________________ 
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Activity 30: Course Reflection 
 

1. What are your main takeaways from this course? (hint: what will you remember 2 years from now? 

What new tools do you have in your toolbox?) 

 

 

 

 

 

 

 

2. What did you learn that was unexpected? 

 

 

 

 

 

 

 

3. What task/skill are you most proud of from this course? 

 

 

 

 

 

 

 

4. What was your favorite machine type, proof, or transformation from this course and why? 
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CS357 Review Sheet – Final Exam 
 

You may use 2 crib sheets as notes during the exam. All other resources are off limits – you are on 

your honor to follow these exam rules. 

        
Content: The final exam will be comprehensive. Material will be drawn from homework assignments, lectures, previous exams, 

and the textbook (Chapters 0 – 5 and Chapter 7).  

 

Procedure: The exam will start promptly. Please arrive to the classroom on time. You may use two sheets of 8.5” x 11” paper 

(both sides) OR four sheets of 8.5” x 11” paper (one-sided) during the exam. Please prepare your own notesheets; you may type 

or handwrite your notesheets. Other than your notesheets, the exam is closed-book, closed-calculator, closed-computer other 

than the exam moodle questions and upload links, and closed-notes. All numerical computations (if any) will be simple enough 

for you to do by hand.  

 

Topics: This study guide is not a contract – in other words, the exam may not cover every topic listed below and there may be 

topics that we covered in class that are not explicitly listed. 

 
TOPICS SINCE EXAM 3: 

• Post Correspondence Problem (PCP) [matching tiles] is undecidable (reduction from A_TM with tiles containing TM 
configs) 

• Time Complexity 
o O, o (big-O and little-O) 
o Every multi-tape TM with time t(n) has equivalent O(t^2(n)) time single tape TM 
o Every nondeterministic TM with time t(n) has equivalent 2^(O(t(n)) time single tape TM 

• Class P (Polynomial Time) 
o Showing a language is in P – create a TM that decides in polynomial time with respect to the input length 
o Examples: PATH (path from s to t in graph), TRIANGLE  
o A_CFG = {<G, w> | G is a CFG that accepts w} is in P 

▪ Dynamic programming on to build up table of variables 
▪ Grammar is first converted to Chomsky Normal Form (preprocessing takes poly time) 

• Class NP (Nondeterministic Polynomial Time) 
o Showing a language is in NP 

▪ Create a nondeterministic TM that runs in polynomial time <OR> 
▪ Create a verifier that takes input and certificate and runs in polynomial time 

o Examples: HAM_PATH, CLIQUE, SUBSET_SUM 

• Does P == NP, Does P != NP?? Most likely that P != NP (P is a proper subset of NP) 

• Reducibility 
o Computable polynomial time function from language A to language B (A is polynomial time reducible to B) 
o If A <=p B and B is in P, then A is in P (composition of functions) 

• NP-complete languages 
o A is NP-complete if: 

▪ A is in NP 
▪ Every other language B in NP is <=p A 

o Examples: SAT, 3SAT, CLIQUE, VERTEX_COVER, SUBSET_SUM, HAM_PATH, examples from homework 
o To show a language A is NP-complete: 

▪ Given B is NP-complete, show that B <=p A. 
▪ Provide function F:B->A 
▪ Show that if w is in B, F(w) is in A 
▪ Show that if F(w) is in A, w is in B 
▪ Show that F is a poly time function 

 

PREVIOUS TOPICS – EXAM 3 

• Proving a language is not context free (pumping lemma) 
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• Turing Machines 
o Configurations 
o Formal definition 
o Creating a state machine 
o Equivalent models: nondeterministic, multi-tape, stay put/left/right movements 

▪ To show equivalence: need to convert the model to a regular TM, need to convert a regular TM to 
the model 

o Turing-recognizable (accepts strings in language but may not halt on all input) 
o Turing-decidable (always halts) 

• Decidable Languages 
o To show A is decidable, construct a TM for A that always halts. 
o If A is a decidable language, then A is Turing-recognizable and the complement of A is Turing-recognizable 

(also called co-Turing-recognizable). 
o Examples of decidable languages with regular languages: ADFA, ANFA, AREX, EDFA, EQDFA, INFINITEDFA 
o Examples with CFLs: ACFG, ECFG 
o Examples from homework: EDFA_REGEX , ALLDFA , INFINITEPDA  

▪ A = {<R> | R is a regular expression describing a language containing at least one string w that has 
111 as a substring.} 

▪ B = {<P> | P is a PDA that has a useless state.} 
o Closure: decidable languages are closed under concatenation, complement, union, intersection 

• ATM and the Halting Problem 
o ATM is undecidable 
o ATM is Turing-recognizable 
o complement of ATM is not Turing-recognizable 
o HALTTM is undecidable 

• Undecidable Languages 
o Proof by contradiction (using a reduction from language A to language B) 
o Examples of undecidable languages: 

▪ ATM, HALTTM, ETM, EQTM, REGULARTM, ALLCFG 
o Rice’s Theorem 

▪ Examples: INFINITETM is undecidable, {<M> | M is a TM and 1011 is in L(M)} is undecidable 
o ALLCFG 

 

PREVIOUS TOPICS – EXAM 2 

• Programming regular expressions 

• Nonregular Languages 
o Prove using the Pumping Lemma, proof by contradiction 
o Prove via closure properties (union, concat, star, intersect, complement) and proof by contradiction 

• Context-Free Languages (CFLs) 
o Grammars (CFG) 

▪ Given a grammar, generate the language and generate strings in the language 

• Generate parse tree for a string 
▪ Given a language, generate a grammar for it 
▪ Determine if a grammar is ambiguous 
▪ Converting a DFA to a grammar (shows that all regular languages are CFLs) 
▪ Converting a grammar to Chomsky Normal Form (CNF) 

o Pushdown Automata (PDA) 
▪ Formal definition 
▪ Given a language, generate a PDA to recognize the language 
▪ Given a PDA, describe the language it recognizes 
▪ Equivalence with CFGs (CFG->PDA, PDA->CFG conversions) 

o Proving closure properties (union, concatenation, star, etc. by modifying grammars or modifying PDAs) 
 

PREVIOUS TOPICS – EXAM 1 

• Discrete Math Review 
o Sets, Sequences (Tuples) 
o Functions, Relations 
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o Graphs 
o Strings and Languages 
o Boolean Logic 
o Proofs 

▪ Direct, Indirect, Contradiction, Induction, Construction 

• Regular Languages (those that can be recognized by DFAs, NFAs, or written as regular expressions) 

• DFAs 
o Given a language, construct the DFA 
o Given a DFA, state the language it recognizes 
o Formal definition as a tuple 

• Union, Concatenation, * 
o Closure of regular languages under union, concatenation, * (know the proofs) 

• Closure of regular languages under other operations such as reverse and perfect shuffle 

• NFAs 
o Given a language, construct the NFA 
o Given an NFA, state the language it recognizes 
o Converting NFAs to DFAs 
o Formal definition as a tuple 

• Regular Expressions 
o Given a regular expression, state its language 
o Given a language, create a regular expression  
o Converting regular expressions to NFAs 
o Converting DFAs to regular expressions 
o Converting DFAs to regular expressions 

 


