
1

CS 445 Computer Networks

Spring 2022

Course Handouts

Dr. Tammy VanDeGrift

Name: _________________________

If found, call/email:_____________________

2

3

HANDOUTS – Please bring this booklet to all class sessions

For access to latest calendar and syllabus: see Moodle

(learning.up.edu)

4

Lab Instructions

1. Software: All lab software is installed on the windows engineering build or Linux build, accessible via
desktop.up.edu.

2. Prelabs: Prelabs are to be completed individually and are due at the start of the lab day. Prelabs are
designed to ensure you have the background knowledge of concepts from class, the textbook, and other
resources.

3. Lab work sessions: You are expected to attend the class sessions for lab days. You will work with
another student during the lab days to complete lab checkpoints. In some cases, you will work in groups
of three. The lab groups will be posted prior to each lab session and may be adjusted due to absences.

4. Lab communication: You are expected to work collaboratively on the labs, ask questions of the
instructor/TA, and ask for your lab work to be checked off.

5. Questions: If you have a question during the lab, please ask in the instructor/TA.

6. Checkpoints: You and your partner(s) will work through lab checkpoints together and ask for your
work to be reviewed at lab checkpoints. If you complete all checkpoints during the lab time, your lab
group does not need to submit anything to Moodle.

7. Unfinished checkpoints: Submit work for finished and unfinished checkpoints in a word file or pdf file
to Moodle by the deadline. The expectation is that pairings will complete the work together. If it is
challenging to get together to complete the lab together, be clear with your partner(s) if you will be
completing the lab individually or as a pair. Be sure to indicate if unfinished checkpoints were done
together or individually in your submitted work. Check Moodle for lab deadlines.

8. Late days: You have two free late days to submit prelabs and/or labs late. You may submit two items
up to 24 hours late or submit one item up to 48 hours late. For partnered labs, all members will be
“charged” late days for late work. However, if one partner has remaining late days and one partner does
not, you may use the maximum late days of both partners.

5

Course Design for Learning

Learning + Labs

Videos / Reading;
Class activities

Prelab

Lab

Exam

(after 3 to 4 labs)

Project:
Implementation of
an app that uses

computer
communications

Team formation

Project proposal

Project background

Beta demos

Code reviews

Infographic

Exposition

Computing in
Developing Regions

Research (ICTD)

Computing/
communications in
other parts of the

world

Podcast Outline

Podcast Recording

6

Activity 1: Intro to Networks

Instructions: Introduce yourselves to your group.

Names: __

With the other members of your group, discuss the following questions and jot down some of

your group’s ideas.

1. What is a network? (Provide a general definition)

2. List examples of networks (need not be computer-based) you see in the world. For example,

Dish Network is a network that provides TV broadcasts to customers.

• ___

• ___

• ___

3. Suppose you are designing a computer network (two or more computers connected by some

link). What goals (properties) do you want to achieve with your network?

• ___

• ___

• ___

4. What is something you do not know right now about computer networks?

(Stop here for class discussion. If you have time, find at least one common attribute among the

group. Find at least one attribute for which you all differ. Ideas might be birth month,

hometown, favorite color.)

7

First challenge: How do we share a link?

Suppose we have computers A, B, and C connected via a switch and D, E, and F connected via a

switch. A wants to send to F, B wants to send to D, and C wants to send to E (the sending may

be done in spurts). How do we share the link between the switches?

Below are three different approaches to sharing a link. For each approach, discuss and write

down the pros and cons. Think of the pros/cons from several perspectives: the nodes, the

switches, fairness, and any other metrics you think are important for network design.

Option 1: Time-sharing (STDM: Synchronous Time Division Multiplexing)

The sending nodes (A, B, and C) share the link by taking turns via time. Time is broken into slices

(let’s say .1 second each), so A gets to use the link between the switches for .1 second, then the

others get it for .2 second, and then A gets to use it again.

Option 2: FDM: Frequency Division Multiplexing

The signal is split up into three different channels and each channel is sent at a different

frequency over the switch-to-switch link. This is similar to how TV signals are transmitted.

Option 3: Statistical Multiplexing

The data is broken into packets (with a fixed maximum size). Packets arrive at the switch and

each is sent along the switch-to-switch link. The switch needs to determine how to prioritize

the packets. This could be done in a first-in first-out (FIFO) manner, or a round robin fashion

among A, B, and C.

A

B X1 X2 E

C F

D

8

 Pros Cons

STDM

FDM

Statistical
Multiplexing

9

CS 445: Stack and Protocols (The Onion Approach)

Goal #1: You want to get the current news for the day.

Here’s you:

cnn.com

You open up a browser on your laptop and type in www.cnn.com in the address field.

What happens?

1. DNS – look to cache for a copy of cnn.com’s IP address.

 Address for cnn?

 157.166.226.25

Hopefully, the local DNS nameserver has the IP address for cnn.com. If not, it can fetch it from another

nameserver.

2. Now, HTTP messages are sent to the web server. [Application Layer]

GET index.html ----------------→

(page is returned)

GET logo.gif -------------------→

(file is retuned)

…

Each item displayed on the page is requested separately.

DNS

nameserver

http://www.cnn.com/

10

3. TCP makes sure each HTTP message is actually received. Each GET message is acknowledged, so an

ACK is sent from the person back to CNN. If no ack is received, the page is sent again. [Transport Layer]

4. While this is happening, the cnn server is probing the network to see how fast the acks are being

returned. This information is used to determine how congested the network is right now and then the

server adjusts rate of how much data to send. [Transport Layer]

5. The information is broken into packets. Each packet is routed through the network. [Network Layer]

Each packet contains the actual data and the address to which to deliver the packet.

6. Each packet is encoded into frames and the bits are encoded into signals. [Link Layer]

Architecture: need abstractions to manage complexity (just like designing software). You would really

like to just use the lower-level protocols rather than coding (or re-implementing) that entire process

yourself. Can think of the lower-level protocols like APIs.

Protocol: provides communication service that higher-level objects use to exchange messages (OR)

agreement dictating form and function of data exchanged

In computer networks, protocols are combined via layering, like an onion. (See figure 1.11 in the

textbook.)

CNN

11

Goal #2: You (host 1) want to send a file to another computer called host 2.

You have a file that you want to send. You have some payload (which is the actual data in the file)

 Host 1:

 Apps: video player, file app, email app

 Transport Protocols: RRP (request/reply protocol);

 MSP (message stream protocol)

 Link Protocol: HHP (host to host protocol)

What transport protocol would the video player use? ______________________

What transport protocol would the file app use? __________________________

What transport protocol would the email app use? ________________________

So, here is what host 1 will do to the file (payload):

Then, the RRP protocol adds a header to the payload:

Then, the HHP protocol adds a header to the payload:

Then, this entire packet gets sent through the network and is received at host 2. Host 2 deals with the

packet by looking at the first header: HHP. HHP deals with the packet by stripping the HHP header and

looking at the next header: RRP. It hands it to the RRP protocol, which strips the header and hands the

payload to the file application.

Payload

RRP Payload

HHP RRP Payload

12

Goal #3: Where do we assign functionality in a network?

Generally, we want to push as much of the functionality to the endpoints (hosts), so the internal

routers/switches can just focus on forwarding. This had aided the success of the Internet (new

applications can be developed, since no changes to the infrastructure are necessary).

Network Layers:

OSI (Open Systems Interconnection) architecture (7 layers)

Layer Responsibilities

Application Up to app

Presentation Encode/decode data, format data

Session Manage connections and multiple streams

Transport Reliability, congestion control

 (layers above are done at the end hosts)

Network routing packets

Link Framing

Physical Bit encoding

 (internal to network)

Internet Architecture (4 layers)

Layer Example protocols

Application HTTP, SMTP, FTP

Transport TCP, UDP

Network IP

Link Ethernet, Wireless, Fiber

How does the Internet Architecture map to the OSI architecture?

__

13

The Internet architecture is like an hourglass. Everything must go through IP.

 IP

This actually makes the network scalable. It is similar to having a JVM for Java (Java code is run on a

virtual machine that then translates instructions to the actual hardware). Because everything must use

the Internet Protocol, new apps can be developed.

In this course, we’ll go through the material bottom-up:

Link layer (Ethernet, wireless)

Network layer (IP)

Transport layer (TCP, UDP)

Application layer (HTTP, SMTP, DNS, peer-to-peer systems)

We will approach the course like a systems design course (discuss pros/cons of solutions) and become

familiar with the network protocols

14

CS 445: Network Performance Metrics

Bandwidth =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑡𝑖𝑚𝑒

 Example: 10 Mbps (10 million bits per second); 1 Gbps

 Note: In EE, bandwidth refers to frequency band (3000 Hz), but here it is # bits / time

Note: can look at bandwidth as how “wide” is a bit. If the bandwidth is 1 Mbps, then 1 bit is 1

microsecond “wide”.

Throughput =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑡𝑖𝑚𝑒

 Note: bandwidth and throughput are often used interchangeably, but bandwidth is the

theoretical max and throughput is the actual data rate

Latency = Delay = total time to send message (data) from sender (start of transmission) to receiver (end

of transmission) = 𝑃 + 𝑇 + 𝑄

 Note: measured in time

 Parts:

 P = propagation time (time of travel in physical medium, nothing is faster than light)

 Speeds:

2.3 x 108 meters/second in cable

 2.0 x 108 meters/second in fiber (glass)

 T = transmit (time to transfer data, based on size of data and bandwidth)

 Q = queue (time data sits at switches waiting to be forwarded + processing time to

check headers and forward)

 𝑃 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚

 𝑇 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑙𝑖𝑛𝑘

RTT = round trip time = 2 x propagation time

15

delay x bandwidth product

 Measures the number of bits that can be in flight in the pipe

bandwidth (data/time)

 latency/delay (time)

Think of the cross-section of the pipe as the bandwidth.

Think of the length of the pipe as the latency (delay).

Example:

 Latency = 50 ms

 Bandwidth = 45 Mbps

Then D x B = (50 x 10-3 seconds) x (45 x 106 bps) = 2.25 x 106 bits

Practice: What is the D x B product for a latency of 10 ms and a bandwidth of 500 Mbps?

Why is this D x B measurement important?

Think of it is the number of bits sender can continuously send before the first bit arrives at the

receiver. Want to fill/stuff the pipe. May need to send 2 x (delay x bandwidth) bits before

getting response from receiver (2 pipes for round trip). Also, we cannot overfill the capacity of

the pipe.

RTT x B Examples (from textbook – typical speeds with typical distances):

Technology bw distance RTT (based on distance) RTT x bw

Wireless 54 Mbps 50 m 0.33 μs 18 bits

Satellite 1 Gbps 35000 km 230 ms 230 Mb

Trans-continental Fiber 10 Gpbs 4000 km 40 ms 400 Mb

16

Be careful with M and k!! – they are different for speed and size

b = bit

B = byte

M = 106 (when referred to Mbps, as in bandwidth)

M = 220 (when referred to MB, as in data size)

k = 103 (bandwidth)

k = 210 (size)

17

CS 445: Example Calculations with Speed

File Sending Example:

Suppose you want to send a 1.5 MB file.

RTT = 80 ms.

Packet size = 1 KB.

There is 2 x RTT of handshaking preceding the transfer of the file (this is the case for TCP, which

we will see later in the course).

Assume no queuing or processing time (directly connected computers)

What is the total time to transfer the 1.5 MB file, to the nearest thousandth of a second, in the following

cases?

a. bandwidth is 10 Mbps and data/packets are sent continuously

total time = (2 RTT) + Latency

 = (2 RTT) + (P + T + Q)

 = (160 ms) + (40 ms + (1.5 MB/10 Mbps) + 0 seconds queuing)

 // note: 40 ms is one-half of the 80 ms of RTT

 = .160 sec + .040 sec + (1.5 x 220 x 8 bits)/(10 x 106 bits/sec)

 = .2 sec + (12582912 bits)/(10000000 bits/sec)

 = .2 + 1.258 seconds

 = 1.458 seconds

b. bandwidth is 10 Mbps, but after sending each packet, must wait one RTT before sending the next

packet

First, let’s see how many packets we need to send:

packets = (1.5 MB / 1 kB) = (1.5 x 220) / (1 x 210) = 1572864 / 1024 = 1536

total time = (2 RTT) + Latency

 = (2 RTT) + (P + T + Q)

 = (time in part a) + Q

 = 1.458 sec + (1535 * .08 seconds) //note: 1535 waits for 1536 packets

 = 1.458 + 122.8 sec

 = 124.258 sec

18

c. bandwidth is infinite, up to 20 packets can be sent each RTT

From part (b), we know the # of packets is 1536.

Thus, there are (1536 / 20) = 76.8 transfers. Need to round up to 77 batches. Each batch takes one RTT,

but the first batch arrives in 1/2 RTT. Then 76 RTTs between the first batch and the 77th batch.

Group one takes (1/2 RTT) to get to destination.

--------------→

Group two takes 1 RTT to get to destination

Group three takes 1 RTT …

Group 77 takes 1 RTT

Total time = (2 RTT) + Latency

 = (2 RTT) + (P + T + Q)

 = (2 RTT) + (076.5 x .08 sec + 0 + 0) //note: .08 sec is the RTT

 = (78.5 RTT x .080 s)

 = 6.28 sec

Earth and Mars Example:

Suppose 128-kbps point to point link between Earth and Mars. Distance between Earth and Mars is 55

Gm and data travels at the speed of light: 3 x 108 meters per second.

a. What is the minimum RTT for the link?

RTT = 2 * Propagation

RTT = 2 * (55 x 109 meters) / (3 x 108 m/sec)

RTT = 2 * 184 sec

RTT = 368 sec

b. What is the delay x bandwidth product?

D x B = (one way time) x 128 kbps

D x B = (368 / 2 sec) x (128 kbps)

D x B = 184 sec x 128 x 103 bits / sec

D x B = 2.81 MB

c. A camera takes pictures and sends them back to Earth. How quickly after a picture is taken can it

reach mission control on Earth? Assume the image is 5 MB.

19

Latency = P + T + Q

Latency = (184 sec) + (41943040 bits)/(128 x 103 b/s) + 0

Latency = 184 + 328 sec

Latency = 512 sec

Minimum Bandwidth Examples:

Calculate the bandwidth necessary for transmitting the following data in real time.

a. HDTV (1920 x 1080 pixels, 24 bits/pixel, 30 frames/second)

bandwidth = (1920 x 1080 pixels/frame x 24 bits / pixel x 30 frames/second)

bandwidth = 1.5 Gbps

b. telephone service (8-bit samples at 8kHz)

bandwidth = (8 bits x 8 x 10^3 Hz)

bandwidth = 64 kbps

Latency Examples with Switches:

Calculate the latency (first bit sent to last bit received) for the following cases:

a. 1-Gbps link with a single store and forward switch in the path. Packet size is 5000 bits. Each link

introduces a propagation delay of 10 us and that the switch begins retransmitting immediately after it

has finished receiving the packet.

For one link:

Latency = P + T + Q

Latency = 10 us + (5 kb / 1 Gbps) + 0

Latency = 10 us + 5 us

Latency = 15 us

For two links: latency is 30 us

b. Now suppose there are 3 switches between the sender and receiver (4 links).

For one link:

Latency = 15 us

For four links:

Latency = 60 us

20

Activity 2: Practice with Latency vs Bandwidth

1. Suppose I want to send a 1-byte message from Portland to New York and then receive a 1-byte

message from New York.

Is this latency-bound or bandwidth bound? __________________________

2. Suppose I want to send a 50 Gigabyte video to New York.

Is this latency-bound or bandwidth bound? __________________________

3. Suppose I want to send an email from Portland to Amsterdam.

 Is this latency-bound or bandwidth bound? ___________________________

21

Activity 3: Performance Metrics Activity

Problem 1: Consider a point-to-point link 50 km in length. At what bandwidth would propagation delay

(at a speed of 2 x 108 m/s) equal transmit delay for a 100-byte packet?

Bandwidth = ____________________

Problem 2: Same situation as problem 1 except now the packet is 512-bytes large.

Bandwidth = ____________________

Problem 3: Calculate the bandwidth necessary for transmitting in real time for the following data:

a. Mobile audio of 260-bit samples at 50 Hz

b. High-def audio of 24-bit samples at 88.2 kHz

c. Video at 768 x 432 pixels, 24 bits/pixel, and 30 frames per second

22

CS 445: Encoding (NRZ, NRZI, Manchester, 4B/5B)

Protocol Bit Encoding

NRZ 1
0

High
Low

NRZI 1
0

Transition from low to high or high to low
No transition

Manchester 1
0

High to Low
Low to High

4B/5B 4 bit sequence Use the 5-bit pattern in Table 2.2 of textbook
Then use NRZI to encode those 5 bits

Activity 4: Practice with Encoding

Part 1: Encode 00110101 with the different protocols

Below encode the signals for the following bit sequence. Assume the clock read/write is represented by

the vertical lines. Assume the previous bit in the NRZI encoding was a 0 encoded as a low signal.

00110101

 0 0 1 1 0 1 0 1

NRZ

NRZI

Manchester

23

In 4B/5B, the bits 0011 translate to 10101. The bits 0101 translate to 01011. Then, the bits 1010101011

would be encoded using NRZI. Draw the encoding below (assume the previous bit before this sequence

was a low signal).

Encoding Name Pros? Cons?

NRZ

NRZI

Manchester

4B/5B

24

Part 2: Create and encode your own message

Choose an encoding scheme: NRZ, NRZI, Manchester, or 4B/5B. If you choose 4B/5B, use an 8-bit

sequence in the box below.

Bit sequence:

Which encoding scheme did you choose? (circle)

 NRZ NRZI Manchester 4B/5B

If you chose NRZI, what did you assume as the previous bit? __ Did you assume it was high or low? ___

Encode the signal below. Use vertical dashed lines to represent the clock time reads.

Give this encoded signal to another person/group to decode. The other group will be the receiver host

and decode the bit sequence. You will decode their signal.

What is the other group’s encoding scheme? _______________________________

What is the other group’s bit sequence? ____________________________

25

CS 445: Framing

Now that we can get bits into a wire / signal (low/high voltages), how do we package bits together? This

is the challenge that framing solves.

How would you package bits together?

Option 1: Byte-oriented with sentinels at beginning and end

 Control code (sentinel) at beginning and end of frame

 Control code (sentinel) in data part needs to be escaped somehow

Example: PPP (Point to Point Protocol)

 Flag | Header | Payload | Checksum | Flag

 Flag is a special code to indicate start and stop of frame (used on dial up modems)

Option 2: Byte-oriented with header size

Put # of bytes in the header

 Then read that many for the frame

Option 3: Use the clock

 Send a fixed number of bytes per frame

Example: SONET (synchronous optical network)

 Send 9 rows of 90 bytes per frame

Option 4: Bit-oriented (have beginning and ending bit pattern); any number of bits in between

 Example: HDLC (high-level data link control)

 Pattern is 01111110 for beginning and end

 If seen in the data, the sixth one is stuffed with a 0

26

CS 445: Error Detection

How could data get corrupted?

__

Why would we want to be able to detect data transmission errors?

 __

Two-Dimensional Parity

Magic trick example: add extra parity bit to end of each row and bottom of each column

Activity 5: Practice with 2D Parity Error-Detection

Assume this is the original data:

0100110

0000110

1011101

0010100

What data would be added for 2D parity error-detection?

Does this always detect 1-bit errors? Yes No

Does this always detect 2-bit errors? Yes No

Does this always detect 3-bit errors? Yes No

Does this always detect 4-bit errors? Yes No

Can this correct 1-bit errors? Yes No

Can this correct 2-bit errors? Yes No

27

Internet Checksum (done in IP)

Idea: Add up numbers and then transmit the sum.

Formula for checksum:

1. Add up the words (width of payload chunks) transmitted using ones complement arithmetic.

2. Use the sum as the checksum (represented in ones complement)

Review of ones complement representation:

Positive numbers: represented normal in binary

Negative numbers: each bit is inverted

Examples of ones complement:

7 = 00000111

-7 = 11111000

Assume data is the following:

00000010 (2)

00000101 (5)

00000011 (3)

11111100 (-3)

Then, when we add the numbers, we get:

 00000010 (2)

+ 00000101 (5)

= 00000111 (7)

+ 00000011 (3)

= 00001010 (10)

+ 11111100 (-3)

= 00000110 (plus a 1 in the carry bit, so this is added to the LSB)

+ 1

= 00000111 (7)

So, 00000111 would be sent as the checksum for the data.

28

CRC – Cyclic Redundancy Check (done in ethernet for 32-bit CRC)

Idea: use polynomial algebra to find polynomial to pad original message

Steps to add k error-checking bits to message:

1. Represent message M as coefficients of a polynomial M(x).
Example: If M = 10010101, then M(x) = x7 + x4 + x2 + x0

2. Sender calculates P(x) from M(x) that is exactly divisible by C(x), where C(x) is an established
agreed upon polynomial with degree k where k is the length of M.
To calculate P(x):

I. Multiply M(x) by xk where C(x) has degree k. Let the result be T(x).
II. Find remainder R(x) of T(x) / C(x)

III. P(x) = T(x) – R(x)
3. Send coefficients as bits for P(x) polynomial.
4. Receiver divides P(x) by C(x). If remainder is not 0, an error occurred. If the remainder is 0, the

original message M is all but the last k bits.

29

Example of 3-bit CRC:

Step 1: Representing M as a polynomial

M = 10101101

M(x) = x7 + x5 + x3 + x2 + x0

Step 2: Calculating P(x)

C(x) = x3 + x2 + 1 // established polynomial for the protocol

Since the degree of C(x) = 3, we multiply M(x) by x3 to get T(x):

T(x) = x10 + x8 + x6 + x5 + x3

Now, find remainder R(x) when dividing T(x) by C(x) (division is done with subtraction as XOR):

 11011011 Remainder: 111

1101 10101101000

 1101

 1111

 1101

 0101

 0000

 1010

 1101

 1111

 1101

 0100

 0000

 1000

 1101

 1010

 1101

 111

P(x) = T(x) – R(x)

10101101000

- 111

10101101111 (subtraction done via XOR)

30

Step 3: Send coefficients

10101101111 is sent to receiver

Step 4: Receiver verifies bits have no errors

Receiver calculates message: P(x) / C(x)

 11011011 Remainder: 0

1101 10101101111

 1101

 1111

 1101

 0101

 0000

 1010

 1101

 1111

 1101

 0101

 0000

 1011

 1101

 1101

 1101

 000 is the remainder

Thus, the data is “good” and the message is 10101101. (remove last 3 bits from what was sent)

31

Activity 6: Practice with CRC Error-Checking

M = 11100110

C(x) = x3 + x2 + 1

What bits get sent? ____________________________

Show work here:

Step 1: Representing M as a polynomial

Step 2: Calculating P(x)

Step 3: Send coefficients (put on line above)

(if time): Do step 4 to ensure that the bits sent are correct.

32

CS445: Reliable Delivery and ARQ

What could fail when sending data from Host A to Host B? ___________________________________

From Host A’s perspective: would like to know that Host B got the frame/packet (data)

ARQ: Automatic Repeat ReQuest

Rules of the game:

• Receiver automatically acknowledges correct frames

• Sender automatically resends after a timeout, until ack for that frame is received

Stop and Wait

Idea:

 1. Send a frame

 2. Wait for acknowledgment

 3. If no ack received within a timeout, send frame again

 4. If ack arrives, send next frame of data

Activity 7: What could other pictures look like?
 Frame lost, resend frame

 Ack lost, resend frame

 Timeout, send frame, receive ack from previous transmission of frame

time

ack

frame

33

Discussion questions:

1. How long should we set the timeout?

2. Suppose the sender has two frames of data to send. Draw a picture where the data for frame 1 is

resubmitted but the receiver receives the resubmission as new data.

3. How do we solve the issue in the previous question? Sequence numbers (0 or 1) since two frames can

be in transit at once.

34

Go through the scenarios from previous page again, but this time using sequence numbers.

 Frame lost, resend frame

 Ack lost, resend frame

 Timeout, send frame, receive ack from previous transmission of frame

PRO of Stop-and-wait: simple

CON of Stop-and wait: not utilizing bandwidth (lots of waiting)

35

CS 445: Sliding Window (reliable transmission)

Idea: Keep multiple frames in flight at once (Keep pipe full)

 Do not wait for ack from previous frame before sending next frame

On sender side:

 Assign seqNum to each frame

 Maintain 3 variables:

 SWS – send window size (# of simultaneous frames in flight)

 LAR – last ack received

 LFS – last frame sent

 Note: LFS – LAR <= SWS

 Sender keeps timer for each frame sent, resends if necessary

 Sends another frame when ack arrives

On receiver side:

 Maintains 4 variables:

 RWS – receive window size (# frames can store in buffer)

 LAF – last acceptable frame

 LFR – last frame received

 SeqNumToAck – current frame number for acknowledgment

 Note: LAF – LFR <= RWS

 Upon receipt of frame F:

 If F has seqNum <= LFR or seqNum > LAF, discard

 Else, accept frame into buffer

 Assigns SeqNumToAck to last consecutive frame received

 If SeqNumToAck changed, send ack with the SeqNumToAck

 LFR = SeqNumToAck

 LAF = LFR + RWS

36

Example:

Sender SWS = 4 Receiver RWS = 4

S sends F1 R gets F1 and sends Ack 1

 LFR = 1

 LAF = 5

S sends F2 R gets F2 and sends Ack 2

 LFR = 2

 LAF = 6

…

S receives Ack 1

S sends F5 R gets F5 and sends Ack 5

 LFR = 5

 LAF = 9

S receives Ack 2

S sends F6 F6 dropped

S receives Ack 3

S sends F7 R gets F7 (no ack sent)

 LFR = 5

 LAF = 9

S receives Ack 4

S sends F8 R gets F8 (no ack sent)

 LFR = 5

 LAF = 9

X (timeout fires for F6)

S sends F6 R gets F6 and sends Ack 8

 LFR = 8

 LAF = 12

Note: sender would send frames 1, 2, 3, and 4 immediately, since SWS is 4. The sender sends F5 once

the ack for 1 is received.

37

Activity 8: Practice with bit calculations and thoughts about sharing a line

Example: calculating the size of sequence numbers

Link Bandwidth: 1 Mbps point-to-point link

Distance: 3 x 104 km

Each frame carries 1 KB of data

Speed of light: 3 x 108 m/s

RWS: 1

a. How many bits are necessary to store sequence numbers for sliding window?

Need to think about how much data can be in flight at once (RTT x bandwidth) since that is how much

data could be in flight before hearing from the receiver.

One-way prop delay =

frames per second =

Bandwidth x RTT =

Largest sequence number =

of bits to store this number =

b. What if the RWS = SWS?

Largest sequence number =

of bits to store this number =

c. Suppose nodes share a single link or shared space. How should nodes share? Who sends when? No

one is in charge of managing turn-taking.

38

What issues may arise?

39

CS 445: Sharing Links; Assume no one is in charge (this is a distributed system)

Aloha – developed to support communication in a radio network in Hawaii in 1960s (developed by Norm

Abramson)

 Protocol: When you have data to send, send

 When collisions occur, wait a random length of time and try again

Simple as that.

 Image by: Shyam Gollakota

Is this a good idea? When would it work well? (Works at most 18% efficiency. Goes to 36% when time is

divided into slots.)

40

CS 445: Sharing (no switches)

CSMA/CD – Carrier Sense Multiple Access with Collision Detect

Carrier Sense = can distinguish between a busy and an idle link, so check it first (note: Aloha had no

wires, much easier to do with wires)

Multiple Access = multiple nodes sharing a common resource (link)

Collision Detect = node listens as it transmits and can detect when an interference (collision) occurs

Protocol: If link is idle, send if you have data

 If link is busy, wait until idle and may wait longer to send (see below)

Options:

 1. 1-persistent: wait until link is idle and send (then all queued up senders will collide) [Ethernet]

 2. p-persistent: send with probability p [Aloha]

Issue: What if 2 nodes start sending at the same time (both detect an idle link, but because of distance,

they do not detect another transmission until after they have started sending)?

We get a collision, so nodes need to send jamming sequence to let other nodes know that the link is not

idle. Then we need to determine when to send again.

41

Classic Ethernet (802.3)

Nodes share single link or are connected via hubs/repeaters. In any case, only one frame can be sent

across the entire LAN at once.

Background

Frames (total size) are 64 bytes – 1500 bytes in size.

Length of LAN: coax (up to 500 m), can be up to 2500 m with twisted pair or fiber (can also use repeaters

and hubs to gain distance) [limited due to jamming signal size]

Max # hosts: 1024

Original: used Manchester encoding, 4B/5B or 8B/10B used today on high-speed Ethernets

Each adapter has a unique address (6 bytes long, assigned by hardware manufacturer)

(MAC address, media access control)

Frame format

8 bytes preamble | 6 bytes destination | 6 bytes source | 2 bytes type (demux for higher-level protocols)

| payload | 4 bytes CRC

Preamble is alternating 0’s and 1’s to synchronize sender and receiver

Receiving frames

Every node sees every frame in the network.

Promiscuous mode: adapter receives all frames and delivers all to host

Most cases, adapter only delivers frames addressed to the host

Broadcast address is all 1’s

Multicast address: first bit is 1 and then the group address

Sending frames

If idle, send and hope for no collisions

Dealing with collisions

Each frame must be at least 64 bytes long, so it is on the wire long enough to detect collisions

Sends a 32-bit to 512-bit jamming sequence (plus 64-bit preamble), depending on how far away the

hosts are from each other

Ethernet uses exponential backoff when collisions occur to get closer to probability 1/n for n concurrent

senders.

 1st collision: wait 0 or 1 frame times (51.2 us) and retry

 2nd collision: wait 0, 1, 2, or 3 frame times and retry

42

 Nth collision: wait 0, 1, … 2N-1 frame times and retry

 Cap N at 10

PROS: _______________________

CONS: _______________________

Mitigation: limit hosts to 200, limit spread so RTT delay is closer to 5 us rather than 51.2 us

Improvement we’ll see soon: switched Ethernet (fewer nodes on shared LAN)

For more information about 802.3: https://www.ieee802.org/3/

https://www.ieee802.org/3/

43

CS 445: Wireless Protocols

Shared medium is space (signals transmitted over certain frequencies)

Different Forms:

1. Bluetooth – used for short distances, personal networks

2. Wi-Fi – used for local area networks, usually connect computer to a base station, 802.11

3. Cellular – tens of miles, cell phones to towers

Wi Fi: 802.11 (data rate today: 450 Mbps)

Suppose we have 3 hosts (A, B, C):

Now, nodes have a limited range. Here, A can send to B, but A cannot send to C.

A is a “hidden node” for C and C is a “hidden node” for A.

What if A and C both want to send to B simultaneously? __________________________

Will collision detection (used in Ethernet) work? __________________________

Idea: Listen before transmitting, reserve medium by sending a special signal, if no ack for reservation,

assume there is a collision and use exponential backoff, otherwise – send data; the exponential backoff

randomizes the length of time when a node will send again, so hopefully, there is less chance for nodes

to send again at the same time.

A

B

C

44

Called CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)

Example: A and D are just out of range

A B C D

B wants to send to C and A wants to send to B:

 1. B sends C a RTS (Request to Send) frame that includes how long B wants to reserve the space.

 2. A hears RTS and defers its transmission.

 3. C replies to B with CTS (Clear to Send) frame

 4. D hears CTS and defers to allow the data to be sent

 5. B sends data to C

 6. C sends ack to B

 Medium is available again and now A can send a RTS to B

*Note: Any node that hears RTS but not CTS frame can send, too (the sending will be out of range). Any

node that sees CTS must wait.

Commonly, nodes communicate directly with a base station (wireless access point). Use this CSMA/CA

algorithm with nodes connected to same AP, then use whatever wired LAN that connects the access

points. APs periodically send out beacons that advertise their capabilities.

To connect to an access point:

 1. Node sends a Probe frame

 2. All AP’s reply with a Probe Response frame

 3. The node selects an AP and sends an Association Request frame

 4. AP responds with Association Response frame.

45

802.11 data frame format:

Control | Duration | Addr1 | Addr2 | Addr3 | SeqCtrl | Addr4 | Payload | CRC

16 16 48 48 48 16 48 0-18496 32

Control – type of RTS, CTS, if using a distribution system, other bits for management

Duration – duration length (sender calculates how long to send based on size and data rate); others who

read this frame can update their own counters for how long to wait before trying to send

Addr1 – target

Addr2 – source (or immediate sender if on a DS)

Addr3 – intermediate destination (AP)

SeqCtrl – frame #

Addr4 – original source

Payload (likely IP packet that has the length of the packet embedded)

CRC – cyclic redundancy check

Suppose node A is attached to AP1 and node B is attached to AP2. A sends to B. Then,

Addr1 = B

Addr2 = AP2

Addr3 = AP1

Addr4 = A

801.11 communicates in the unlicensed regions: 2.4 Ghz, 5 Ghz (several channels at these frequencies)

Also uses inter-frame spacing between frames to allow others to “get in” to send and to reduce the

number of collisions. The spacing is different for acks, CTS frames (shorter SIFS) than for data frames

(longer). There are two different spacers for data: time-bounded data versus asynchronous data.

For more information: https://www.ieee802.org/11/

https://www.ieee802.org/11/

46

Other ways to share:

Bluetooth – divide into numbered time slots for transmissions, master/slave model

Slaves only communicate with master, not other slaves.

Time-division multiplexing (time is broken into segments and each device gets a chance to send at these

time intervals.)

 A frame takes up 1, 3, or 5 time slots

 Up to seven slaves (more parked slaves can exist); slaves can only send during even-numbered

time slots in response to the master. This gives the master control during the even slots and who has the

next turn.

Because communication is at 2.45 Ghz (unlicensed), it uses a spread-spectrum technique to deal with

interference. Have you ever heard your neighbor’s cordless phone calls?

To avoid this situation, Bluetooth uses frequency hopping over 79 channels, each for 625 us at a time,

also is useful for setting its time slot duration. Use a pseudorandom # generator to keep the master and

slaves using a consistent sequence of channels.

47

CDMA (cellular networks for much of 3G)

Have potentially many devices wanting to transmit data to the same base station. Yikes – how does the

receiver handle all the signals together?

Think of our options and people talking in a room:

Time –division (each person talks in turn); TDMA

Frequency-division (each person talks at a different pitch); FDMA

Code-division multiple access (each person talks in a different language); CDMA

3G mostly employs CDMA (some use TDMA)

Each sender gets a unique code (chipping code) to use to encode its data. This chipping code also

creates data redundancy (a nice benefit since there’s a lot more lost bits / transformed bits when the

signal is carried through space rather than a wire).

Code is XORed with the sender’s data. If it is a 16-bit chip code, then each sender’s bit is XORed with 16

code bits to create the data that is sent. Then, the receiver uses each chipping code to decode the added

signals from all senders to extract each sender’s unique sequence. It is a bit like decryption: other

senders’ codes would make the data look like noise where the correct sending code makes the bits

come out clean again.

4G and 5G use Orthogonal Frequency Division Multiple Access (OFDMA)

 Several subcarrier frequencies, each modulated independently

48

Activity 9: Analysis of interference strategies

Review the following strategies for dealing with interference. For each, give at least one pro and one

con.

Frequency hopping: avoid interference by hoping that two communications are not sharing the same

frequency at the same time (cordless phone problem)

Pro: _______________________________

Con: _______________________________

CDMA: let the interference happen, but assign codes so that each real signal can be gleaned from the

noise/combination

Pro: _________________________________

Con: _________________________________

Note: 802.11 some protocols used the chipping codes and some used frequency hopping and some used

frequency multiplexing.

49

Activity 10: CDMA Practice

Figure from http://ironbark.xtelco.com.au/subjects/DC/lectures/22/

Each user gets a unique chipping code (aka chip, aka code). Here, to keep things simple, each chipping

code is 6 bits long. Notice that each code is different. Mathematically, these codes are orthogonal to

each other when they are thought of as vectors. Each user will be assigned a unique code.

To encode the data, each 1 bit is represented by sending a positive code v. Each 0 bit is represented by

sending a negative code -v. For example, if the data is 1101, as above and the chipping code is (1, 1, -1,

1, 1, -1) as user C, then the data would be encoded as the transmitted vector (1, 1, -1, 1, 1, -1, 1, 1, -1, 1,

1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1). The first six values are the chip code, the second six values are

the chip code, the next six are the negative chip code, and the next six are the chip code. Notice that

now it takes 6 values to represent a single bit (this is where the sharing comes in).

Activity 1: What would the signal from User B look like for the bit sequence 0011?

 0 0 1 1

http://ironbark.xtelco.com.au/subjects/DC/lectures/22/

50

Suppose all three users send three bits of data (18 values).

User A sends 110.

User B sends 001.

User C sends 010.

Let’s see how these combine:
User Chipping code Bits Transmitted vector

A 1 -1 -1 1 -1 1 110 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1

B 1 1 -1 -1 1 1 001 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1

C 1 1 -1 1 1 -1 010 -1 -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 1 -1 1 -1

Thus, the receiver will get the sum of these as the transmitted vector:

Total

-1 -3 1 1 -3 1 1 -1 -1 3 -1 -1 -1 1 1 -3 3 -1

How will the receiver determine the bits from each sender?

Take each chipping code and multiply it with every 6 bits of the composite signal:

Let’s look at the first set of the composite sequence:

-1 -3 1 1 -3 1

Multiply each of these bits with A’s chipping code:

-1 3 -1 1 3 1

Then add these values together: 6

Because it is non-negative, we interpret it as bit 1.

Let’s look the first set of the composite sequence with B’s chipping code:

-1 -3 -1 -1 -3 1

Adding the values: -8

Because it is negative, we interpret it as bit 0.

Now, let’s look at the first set of the composite sequence with C’s chipping code:

-1 -3 -1 1 -3 -1

Adding the values: -8

Because it is negative, we interpret it as bit 0.

51

Complete the decoding of the second bit from each sender.

Sender Second bit composite
sequence multiplied
with chipping code

Total Bit

A

B

C

If time, complete the decoding of the third bit from each sender.

Sender Third bit composite
sequence multiplied
with chipping code

Total Bit

A

B

C

52

CS 445: Forwarding and Switching

Option 1: Datagrams

 C

B X1 X2 D

 A

 G X3 E

F

Assume we have the network topology above. Nodes are represented by letters and switches are

represented by X’s and numbers. Assume ports are identified by the node/switch that is the outgoing

neighbor.

Each switch as a forwarding table. For example, the forwarding table for X2 is:

Dest Port

A X1

B X1

C C

D D

E X3

F X3

G X3

What is the forwarding table for X3?

Dest Port

A

B

C

D

E

F

G

53

Option 2: Virtual Circuit Switching: Establish Connections

Each switch has a table with the following information: Incoming Port, VCI in (Virtual Circuit ID in),

Outgoing Port, and VCI out

In port/VCI in is a unique pair per connection

Out port/VCI out is a unique pair per connection

Assume A is sending to F. What could the tables at the switches look like?

X1:

Incoming Port VCI in Outgoing Port VCI out

A 5 X2 8

A 0 B 1

… … … …
Note: the outgoing ID is the VC ID for the next hop.

Note: there would be 5 other connections already established on the link from A to X1 with IDs 0 to 4

 Note: there would be 8 other connections already established on the link from X1 to X2 with IDs 0 to 7

 This helps manage load (if the link from A to X1 can only have 5 concurrent connections, no other

connection can be made until an existing connection is closed).

X2:

Incoming Port VCI in Outgoing Port VCI out

X1 8 X3 10

X3:

Incoming Port VCI in Outgoing Port VCI out

X2 10 F 7

Sequence of Events for Sending:

When A wants to send to F:

1. Put the ID as 5 in header of packets destined to F

Then, S1 gets packet:

1. Looks up values 5 and A in table

2. Removes 5 as the VC ID in header

3. Puts 8 as the VC ID in header

4. Forwards packet along outgoing port X2.

54

How do VCIs get assigned?

Signal:

1. A sends a startup message to switch 1 with destination F

2. Switch 1 forwards message to switch 2 with an unused VCI, fill in incoming and outgoing

port entries

3. Switch 2 forwards message to switch 3 with an unused VCI, fill in ports

4. Switch 3 forwards message to F. F chooses a VCI.

5. F sends ack to Switch 3 with VCI, so switch 3 uses it for its outgoing ID.

6. Switch 3 forwards ack with the VCI it used in table.

7. ….

8. Ack gets back to A and a virtual connection is created.

Option 3: Source Routing

If A sends to F:

1. In header, A puts the sequence F – X3 – X2

2. Then, each node looks at last address for forwarding and rotates the entry order (moves last

to first). So, then X1 would see the header, rotate it to X2 – F – X3 and send it to X2.

55

Activity 11: Virtual Circuit Switching Practice and Analysis of Forwarding

1. Assume hosts are connected in a switched network shown below. What are the virtual circuit tables

for the switches after each connection is established. Assume the sequence of connections is cumulative

(concurrent). Assume the VCI ID is chosen such that it is lowest unused VCI on each link, starting with

the lowest VCI ID as 0. Assume that a VCI is consumed for BOTH directions of a virtual circuit.

Figure 3.44 from Computer Networks: A Systems Approach

Host D connects to Host H

Host B connects to Host G

Host F connects to Host A

Host H connects to Host C

Host I connects to Host E

Host H connects to Host J

Connection Switch Input Output

 Port VCI Port VCI

D to H 1 0 0 1 0

 2 3 0 1 0

 4 3 0 0 0

B to G 2 0 0 1 1

 3 3 0 0 0

56

 4 3 1 1 0

F to A

H to C

I to E

H to J

2. Consider the three forwarding protocols that we studied. For each, write down pros and cons.

Consider pros and cons for the hosts (edge nodes). Consider pros and cons for the switches (internal

nodes).

Forwarding Pros for hosts? Cons for hosts? Pros for switches? Cons for switches?

Datagrams

Virtual
Circuit

Source
Routing

3. Which forwarding technique do you think the Internet uses and why?

57

CS 445: Learning Bridges

A --- --- D

B --- -- 0 ---- B1 ------ 1 --------- ---- E

C --- ---- F

Suppose B1 is a bridge between two LANs (one containing A, B, and C and the other containing D, E, and

F).

1. How does a bridge know when to forward packets?

2. Build B1’s forwarding table based on transmissions below:

Host Port Timeout

At first, there are no entries.

1. A sends to D.

 B1 adds entry (A, 0, 10) to table

 Forwards packet to LAN2

2. F sends to E

 B1 adds entry (F, 1, 10) to table, previous entry timeout decrements

 Forwards packet to LAN1 (does not know where E is)

3. B sends to A

 Adds (B, 0, 10) to table. Destination A is in table, so does not forward.

4. A sends to B

 Hosts A and B are both in table, so does not forward to LAN2, resets timeout

5. E sends to F

 Adds (E, 1, 10) to table, Destination F is in table, so does not forward.

…

58

Activity 12: Build Forwarding Tables

Give forwarding tables for each bridge after the following transmissions:

D to C

C to D

A to C

 B1

 Host Port

D to C

C to D

A to C

 B2

 Host Port

D to C

C to D

A to C

 B3

 Host Port

D to C

C to D

A to C

 B4

 Host Port

D to C

C to D

A to C

B1 B2

B3

B4

A

C

D

59

Let’s look at this example. What’s different?

Why might we want or have cycles in a LAN?

Consider a packet that is sent from LAN J to LAN J, but B4 does not know the destination is on LAN J.

What happens?

Need to find a spanning tree in the network to know which bridges to use for forwarding.

A
B

K

F D
C

E

G

I

H

J

B5

B3

B2

B1

B6
B4

B7

60

CS 445: Spanning Tree Algorithm (developed by Radia Perlman, full paper of this
algorithm is on Moodle)

Assume we have switches arranged like this:

Are there cycles? _________

Highlight edges on the figure above to create a spanning tree.

(Note: Prim’s or Kruskal’s from data structures course can work if we know the entire graph;

Unfortunately, in a distributed system, we do not know the entire graph).

61

Idea of algorithm:

 1. Elect root node (use lowest address)

 2. Grow tree as shortest distances from the root bridge

 Break ties with lowest address

 Bridges send config messages over ports for which they are the best path

 Turn off ports that are not on best paths

 3. LAN uses its designated bridge (one with port still active) and the designated bridges do the

forwarding across LANs

Algorithm:

 1. Each bridge believes it is the root

 When learn not the root, stop sending config (hello) messages

 Forward root’s config message with # hops incremented by 1

 Records best config for each port

 2. When not a designated bridge, stop forwarding config messages

 3. Real root sends config messages periodically

 4. If bridge does not receive a config message in a certain period of time, assume topology has

changed and start sending config messages claiming to be the root

Assume Config (hello) message is formatted: (root ID, # hops, send ID)

[also has age and port info, but will keep it simple for this example]

Example:

Assume no bridge has any info about any other bridge in network. Let’s look at B3:

1. B3 sends (B3, 0, B3) to B5 and B2 [claiming to be root]

2. B3 receives (B2, 0, B2) and (B5, 0, B2) from B2 and B5, respectively. Since B2 is < B3, B3 accepts B2 as

root

3. B3 sends (B2, 1, B3) to B5 to forward message [note that the #hops is incremented]

4. B3 receives (B1, 1, B2) from B2 and (B1, 1, B5) from B5. Since B1 < B2, B3 accepts B1 as root.

5. B3 could send (B1, 2, B3) to B2 or B5, but it does not since it is nowhere the “shortest path” from B1.

So, B3 is not a designated bridge.

6. B3 receives (B1, 1, B2) from B2 and (B1, 1, B5) from B5 again, so network is stable. B3 turns off data

forwarding to LANs A and C.

62

Activity 13: Analyze Distributed Spanning Tree Algorithm

A. Does the distributed spanning tree algorithm form a tree? Give tree in figure above by highlighting

the links that would be active.

B. How do the config messages clog the network?

C. What happens when a bridge fails?

D. How could a broadcast message be sent to all nodes in the network?

E. What are the limitations of using this spanning tree algorithm?

Algorhyme, by Radia Perlman, 1985

63

CS 445: IP (Internet Protocol) – Connect for larger networks

Up to now, looked at creating LANs and switches connecting LANs.

Goal: support scalability, heterogeneity, bandwidth control (routing)

Build internetworks, such as

H1 H2 H3 H7 H8

 R1 R3

 R2

AP H6

 H5

Want to connect networks (of varying types)

Routers: forward packets + build forwarding tables

64

IP Features:

1. Supports end-to-end delivery between hosts

2. Uses common addressing

Routers must implement all link level protocols to which they are connected, in addition to

implementing IP.

 Ex: R1 must implement Ethernet and 802.11 (wireless)

 Ex: R2 must implement Ethernet and PPP

 Ex: R3 must implement Ethernet and PPP

Let’s say H5 wants to send to H8 with reliable delivery:

On H5:

 App -> TCP -> IP -> 802.11

R1:

 802.11 -> IP -> 802.3

R2:

 802.3 -> IP -> PPP

R3:

 PPP -> IP -> Eth

Packet from H5 to R1:

Wireless Header | IP | TCP | Any other header by app | Payload for app | CRC (wireless)

Then R1 strips the wireless header and CRC, uses IP header, slaps on 802.3 header and Ethernet’s CRC

[Notice that the TCP and app-level headers are untouched]

Let’s look at the services IP provides: (similar to postal service)

• Connection-less

• Best effort delivery (unreliable)

• Packets routed independently

• Address scheme is global (hierarchical, 32 bits long in IPv4, 128 bits long in IPv6)

In contrast to land-line telephone:

• Connection-oriented

• Signaling to establish connection

• Data routed along same path for duration of connection

65

CS 445: Internet Protocol (Packet, Fragmentation and Reassembly)

IP is “lowest common denominator”

• Asks little of lower-layer protocols

• Gives little to higher layer services

IP packet format:

Version (4) | HLen (4) | TOS (8) | Length (16)

Ident (16) | Flags (3) | Offset (13)

TTL (8) | Protocol (8) | Checksum (16)

SourceAddr (32)

DestAddr (32)

Options | Pad

Data

Most IP packets have a header of 20 bytes (5 4-byte words). Here are the reasons for the fields:

FIELD PURPOSE

Version: IP version #

HLen: size of header in words (4-byte chunks); default is 5 words

TOS: type of service (now is split into two fields: 6 bits for differentiated services and 2 bits

for congestion notification)

Length: packet (fragment) size in bytes

Ident: ID of packet for reassembly

Flags: 0 bit (always 0); DF bit is set for do not fragment; M bit is set to 0 for last fragment; M

 bit is 1 for more fragments

Offset: used for fragment reassembly, measured in 8-byte chunks from start of original packet

TTL: time to live hop count; default is 64

66

Protocol: TCP = 6, UDP = 17, specifies higher level protocol

Checksum: error detection

SourceAddr: IP address of sender

DestAddr: IP address of destination

Options/Pad: Can have optional extra header information

Fragmentation and Reassembly Example:

Suppose host A sends data to host B through router R. The network from A to R is FDDI (fiber) for the

link layer and the network from R to B is Ethernet.

MTU on fiber: 4500 B

MTU on Ethernet: 1500 B

Suppose the original packet sent by A has ident = 123 and contains 3000 bytes of data.

M bit = 0; offset = 0

Now what happens when it gets to R?

Let’s look at fragmentation and reassembly:

Issue: As packets travel from one network to another, the maximum size frame might change. For

example, the max size for FDDI is 4.5 KB and Eth is 1.5 KB.

Solution: Allow packets to be fragmented and reassembled at the destination.

 IPv4: fragmented on demand

 IPv6: learn smallest frame size, source fragments into this size

MTU = maximum transmission unit (max size of frame for a network), note that IP packet header is part

of the data size of the frame

In IP, if a fragment is lost, destination cannot reassemble. Asks for entire original packet again (not the

fragment #), since source has no idea what networks have been crossed.

67

Example:

FDDI -------------- R ----------------- Ethernet

MTU = 4500 B MTU = 1500 B

Let’s say a packet goes from FDDI to the Ethernet through R1 with size 3020 bytes (20 bytes header and

3000 bytes data)

On FDDI:

Ident = 123, M bit = 0, offset = 0

Data is 3000 bytes

Then R gets it; Cannot forward as is, so it fragments it into 3 packets:

Ident = 123, M bit = 1, offset = 0

Data is 1480 bytes

Ident = 123, M bit = 1, offset = 185 [Note that 1480 / 8 = 185]

Data is 1480 bytes

Ident = 123, M bit = 0, offset = 370

Data is 40 bytes

What would happen to these packets if delivered to a network with MTU of 1000 B?

Observations of fragmentation:

- can fragment fragments (does not reassemble at intermediate routers)

- end host has pressure to do reassembly

- must timeout reassembly in case of missing fragments

- routers must use resources to fragment

- must re-send entire packet if one fragment is missing

68

IPv6:

Learn smallest MTU along path before sending

 -No more fragment burden on routers, but still reassembly at end host

Can also do this in IPv4 using ICMP (set DF bit to get feedback messages) to test for smallest MTU.

IP Addresses:

3 types (class A, B, C)

A:

0 | network (7 bits) | host (24 bits)

B:

10 | network (14 bits) | host (16 bits)

C:

110 | network (21 bits) | host (8 bits)

Idea: All hosts on the same network would share the same network number as part of the address.

Routers store network addresses to know which interface to use for forwarding.

Router’s two main jobs:

 Fragment packets (just saw this; need to know to which next hop and connection-type to next

hop)

 Forward packets (see below)

Forwarding Algorithm:

 If network address of destination is a network on one of my interfaces

 Deliver packet to that interface.

 Else if network address of destination is in my forwarding table,

 Deliver to next hop router

 Else

 Deliver packet to default router

69

Activity 14: Fragmentation Practice

Assume A forwards IP packets to router R with a MTU of 2100 B. Then R sends to B with a MTU of 1500

B. The MTU includes the IP header of 20 B. The original data that A needs to forward is 4200 B. Show

the packet fragments along the two links.

Fragments from A to R:

Fragments from R to B:

Ident = 22
Start of header

Rest of header
4200 data bytes

Offset = 0 0

70

CS 445: ICMP, DHCP, ARP

ICMP = Internet Control Message Protocol

Runs in addition to IP on routers/switches

Function: handles errors, queries for status of network

Host -> R1 -> R2 has an error

R2 sends ICMP packet to Host

Example Messages:

Destination unreachable

Packet needs fragmenting

TTL reached 0

IP header checksum failed

Redirect – tell host there is a better route

To keep ICMP messages from getting out of control, do not send messages in response to ICMP packets,

broadcast packets, fragments other than first fragment

Achieving scalability through addressing

Issue: To scale, each host needs a unique address

➔ could lead to huge forwarding tables (addresses are hierarchical, so we can aggregate
routes)

➔ IP addresses reflect location in topology (unlike MAC addresses), interfaces on same
network have same prefix (network address)

Solution: IP addresses have network part and host part

Issue: How does a host get an IP address?

Option 1: System administrator does assignment (not very dynamic, a bit hard to maintain)

Option 2: DHCP = Dynamic Host Configuration Protocol

 Assign hosts IP addresses on demand

 Maintains table of IP address – hardware address pairs (if want to give same IP address to

machines when connected)

 Can also dole out addresses for lease

71

DHCP server on a network and other hosts can send messages to it. The server maintains a pool of

available addresses.

Example:

Host A is on Ethernet with DHCP server.

A sends a discover message to 255.255.255.255 with its hardware address.

The DHCP relay listens for “discover” packets and forwards them unicast to server.

Server looks for unassigned IP address and sends message to A with the IP address.

Host’s responsibility to renew address (expires after so much time)

Issue: Now that a host can get an IP address, how do actual packets get to hosts?

Remember: MAC address used for destination on Ethernet, but packet has IP address as destination in

header.

Solution: ARP (Address Resolution Protocol)

Each host builds up a table of mappings to map IP addresses to MAC addresses, so can use link level

protocol to specify the MAC address in the link header.

A

DHCP

relay

DHCP

Server

Other

networks

72

Example: A and B are on same network.

A wants to send IP packet to B. A knows the IP address for B, but not its MAC address.

A checks to see if B’s IP address and MAC address pair is in local table. If so, uses the MAC address. If

not:

1. A sends broadcast query for IP address X.
2. Node B with assigned IP address X replies with MAC address M. That’s me.
3. A caches (X, M) pair
4. B caches A’s IP address and MAC address (probable future communication)
5. Other hosts seeing A’s message with an entry for A refresh caches (entries timeout after about

15 minutes)

Now, forwarding involves looking up MAC addresses, too.

If host and (dest IP address, MAC address) pair is in ARP table, then deliver locally. Otherwise, use MAC

address of router to forward IP packet to destination.

Then, the router checks the IP address, its forwarding table, and forwards it to the next hop. Note that

the next hop’s MAC address will also be stored in the router’s forwarding table, so the right link-layer

header can be attached.

A: Broadcast – who is X (IP address)?

B: I am X (reply with MAC)

Send IP packet to B with B’s link layer address

73

CS 445: Distance Vector Routing

What is routing? Figuring out to whom to forward packets and update forwarding table

What is forwarding? The process of selecting the next hop / interface as packets are processed

Note that routing is a process that must regularly take place in a network to maintain the accuracy of

the forwarding tables. Generally, routing information is stored separately from the forwarding tables.

Forwarding tables are often optimized for fast look-up.

Goals in routing:

1. Want to choose best path
2. Want to scale (not too many messages sent around network)
3. Want to adapt to changes/failures in network

Two General Options:

Link State Routing Distance Vector Routing

Tell world about your neighbors Tell your neighbors about the world

Option 1: Distance Vector Routing

Assume: routers know neighbors and costs to neighbors (same assumption as in link state)

Algorithm for router:

 Initialize table with neighbors and costs. If not a direct neighbor, distance is infinity.

 Periodically send copy of distance vector to neighbors

 A B C D E F G

 0 1 1 inf 1 1 inf

 (if A is connected to B, C, E, and F)

 When receive a distance vector packet, router looks up packet’s destination costs + my distance

to this neighbor cost to see if value is smaller. If so, update table entry.

74

Example:

Suppose A is doing distance vector routing. Initially, its vector would be:

A B C D E F G

0 1 1 inf 1 1 inf

A would send this to B, C, E, and F.

Next iteration:

A would get DV from B:

A B C D E F G

1 0 1 inf inf inf inf

 No update to A’s DV, since costs to B + cost to others is bigger

A would get DV from C:

A B C D E F G

1 1 0 1 inf inf inf

 A would update it’s DV, since cost to C + C’s cost to D is 2

A’s DV:

A B C D E F G

0 1 1 2 1 1 inf

A would get DV from F:

A B

C

D

G

E

F

75

A B C D E F G

1 inf inf inf inf 0 1

 A would update it’s DV, since cost to F + F’s cost to G is 2

A’s DV:

A B C D E F G

0 1 1 2 1 1 2

Note, A would get a vector from E, too (but those distances are all infinity).

As A calculates costs, it updates its forwarding table:

Dest Cost Next Hop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

76

Activity 15: Distance Vector Routing

We will practice this as a class with people representing nodes in a graph and processing packets to

build forwarding tables.

77

CS 445: Link State Routing (option #2)

Assumption: Each router knows its neighbors and costs to the neighbors

Idea: Tell all routers your neighbors and have each router build up network topology, calculate shortest

paths, and create forwarding tables.

Phase 0: Detect neighbors and costs of links

Phase 1: Share Information and Build Topology (flood information through network)

Phase 2: Compute shortest paths at each router

Phase 3: Build forwarding tables

What information needs to be in a link state packet?

 Router ID (sender)

 Neighbors and costs to the neighbors

 Sequence Number (so other routers can tell if this is new news or old news)

 TTL (so eventually packet dies and does not clog network forever)

Phase 1:

What does router do upon receiving a LSP?

 Uses info to recalculate shortest paths (if info changed)

 If this LSP has not already been flooded by me, flood the packet to all my neighbors

Assume no router has sent or received LSPs.

A sends LSP (advertises that it is 1 hop from B and 1 hop from C)

B and C receive the LSP and each forwards it along all links, so D gets it.*

D receives the LSP and forwards it to B, C, and E.*

*can optimize by not forwarding packet directly back to node from which it was received

The SeqNum tells us if the LSP is new info. SeqNum resets to 0 after a node goes down.

When TTL is 0, stop forwarding the packet.

A B

C D E

78

Phase 2: Compute shortest paths

Use Dijkstra’s Algorithm to compute shortest paths from a node.(Review from data structures)

Notation:

 N set of all nodes

 M set of nodes for which we think we have the shortest path

 s node executing algorithm

 L(i, j) Link cost between nodes i and j, cost is infinity if

no edge

 C(i) Cost of path from s to i

// initialization

M = {s} // M is the set of nodes already considered, initialized to

 // {s}

For each node n in N – {s}

 C(n) = L(s, n)

/// find shortest paths

while(true)

 Unconsidered = N – M

 If Unconsidered == {}, break

 M = M + {w} where C(w) is smallest and w is in Unconsidered

 For each n in [Unconsidered – {w}]

 C(n) = min(C(n), C(w) + L(w, n))

Example:

Assume the following topology is learned through the LSPs:

s

A B

C D

10

1

5

3
2

9

6
4

2

79

Note that the costs are labeled along the edges and the edges are directed.

// initialize

M = {s}

C(A) = 10

C(B) = inf

C(C) = 5

C(D) = inf

// shortest paths: first iteration

U = {A, B, C, D}

M = M + {C} since C(C) is lowest

// update costs

C(A) = 8 [C(C} + L(C,A) = 8] Forward A through C

C(B) = 14 [C(C) + L(C,B) = 14] Forward B through C

C(D) = 7 [C(C) + L(C,D) = 7] Forward D through C

// next iteration

U = {A, B, D}

M = M + {D}

// update costs

C(A) = 8 [C(A) same as before]

C(B) = 13 [C(D) + C(D,B) = 13] Use path through C and D

// next iteration

U = {A,B}

M = M + {A}

// update costs

C(B) = 9 [C(A) + C(A,B) = 9] Use path through C and A

// next iteration

U = {B}

M = M + {B}

// END //

80

Phase 3:

Now, we build up the forwarding table. In this example, all packets would be forwarded to C.

Dest Total Cost NextHop

S 0 --

A 8 C

B 9 C

C 5 C

D 7 C

81

Activity 16: Link State Practice

You will get a separate handout (different handout per node in the graph) to use link state routing to

build the forwarding table.

82

CS 445: Border Gateway Protocol (BGP)

Goal: build large networks; forward packets across smaller networks; scale gracefully

Hmmm – think about link state routing. Do you want packets flooding the entire Internet?

Hmmm—think about distance vector routing. How big would those distance vector packets be for the

entire Internet?

Yikes. We need something better to scale. Fortunately, we actually have some hierarchical structure in

the way networks are interconnected. Let’s look at how the Internet might be connected:

 You – UP ISP

 Backbone Provider 1

PP PP (Peering Point)

 Backbone Provider 2

ISP ISP

Corp A Corp B You at home

Each entity is an Autonomous System (AS). We need a way to communicate paths (routes) from one AS

to another.

Corp A is a stub AS. Backbone is a transit AS. Corp B is a multihomed AS (connected to 2 ASes, but

refuses to carry traffic between the ISPs).

AS 1 AS 2

Border

router /

gateway

83

A router that connects one AS to another is called a border router or gateway.

Use intra-domain routing with AS1 to move packets within AS1 and use inter-domain routing between

ASes.

Border Gateway Protocol

Responsibilities of border routers:

1. Summarize / advertise internal routes to external neighbors (Speakers)

2. Get internal network addresses from external neighbors

3. Use policies for determining best route (could be based on cost, contracts between ASes,

geographically closest peering point)

BGP Features:

1. Path vector routing

2. Application of policy

3. Operates over reliable transport (TCP)

1. Path Vector Example:

The speaker for AS60 would get the path vector (30-20-40) from AS30 and learn that AS40 has network

addresses A, B, and C. Field width for AS is 32 bits.

Why is announcing the entire path important?

10

30 20

40

A, B, C

50

D, E

60

F, G, H

84

 Image courtesy of Shyam Gollakota

A, B, and C are addresses

Remember: route announcements move in opposite direction to the traffic

2. Policies

Chosen by AS. Negotiated by ASes.

Routes may depend on owner, cost, contracts between ASes. The policy dictates routes to choose and

which routes will be advertised to other speakers. Border routers select the best path of the ones they

hear, but BEST may not always means “shortest”. It may be BEST according to real money costs.

Example policies: AS X does not provide transit for AS A (A could only use X for final delivery).

AS X prefers not to use AS A since A is unreliable. AS X and AS A carry traffic for each other.

ISP – Customer Relationship

Responsibility of ISP:

 Sell transit to customers

 Announces path to all other IP addresses to customer, so customer can reach others

Customer:

 Announces path to their IP address (prefix) to ISP, so ISP can advertise via BGP

85

ISP – ISP Relationship (Peer)

Peers for mutual benefit (use me and I will use you for free)

Announce paths to each other about own customers

 (Tier 1 ISPs are considered backbone providers, more global reachability)

As a Customer, you might connect to two ISPs

ISP 1 ISP 2

 Customer

As the customer, you could control which ISP you use for outgoing paths (based on announcements

from the ISPs).

You cannot control which ISP others use to connect to you. Both ISP 1 and ISP 2 will announce they can

reach you and the path vectors and policies will dictate which ISP outside traffic will use you reach you.

86

Activity 17: Combining intra-domain and inter-domain routing

You are router D. A, C and F are “speaking” with other gateways using BGP. Routers A, C, and F provide

interior gateway messages (sometimes called interior BGP) that flood to the other routers.

Suppose you get the following interior gateway messages from the gateway routers:

From A: Use me to get to 20.0/16 and 192.48.8/24

From C: Use me to get to 12.8.20/24

From F: Use me to get to 128.55/16

Build your BGP table (contains network prefixes and border router destination):

Prefix BGP Next Hop

To AS 1

To AS 2

To AS 3

A

B

C

D

E

F

87

Meanwhile, an intra-domain routing protocol is also happening, so you know how to forward packets to

each router in the network. Complete the following forwarding table:

Router Internal Next Hop

A

B

C

D -------

E

F

Now, with the two tables, you can build the actual forwarding table for the network addresses. Figure

out the ultimate destination (border router) and then use the forwarding table immediately above to

figure out the next hop.

Prefix Internal Next Hop

20.0.16

12.8.20/24

128.55/16

192.48.8/24

88

CS 445: IPv6

Main motivation to develop version 6: need more global unicast addresses (32 bits per address in IPv4 is

too limiting)

IPv6 addresses are 128 bits long -> 3.4 x 1038 unique addresses (with 100% efficiency)

Packet Format:

Version (4) | Traffic class (8) | Flow label (20)

Payload length (16) | Next Header (8) | Hop Limit (8)

Source Address (first 32 bits)

Source Address (second 32 bits)

Source Address (third 32 bits)

Source Address (fourth 32 bits)

Destination Address (first 32 bits)

Destination Address (second 32 bits)

Destination Address (third 32 bits)

Destination Address (fourth 32 bits)

Next header / data (rest)

Nice. The packet header is actually simpler than IPv4.

Version: same field (specifies version 4 or version 6, so switch/router knows how to interpret the rest of

the packet)

Traffic class: help with quality of service (we will see this at the transport layer)

Flow label: help with quality of service (we will see this at the transport layer)

Payload length: length of packet in bytes (includes header)

Next header: value specifies if/which special headers are included after the destination address; if no

special header, then it is the value of the IPv4 Protocol field (specifies TCP or UDP)

Hop Limit: time to live count by hops (just renamed to be clear that the TTL is based only on hop count)

Source Address: 128 bits for sender

Destination Address: 128 bits for receiver

Next Header: if there are special optional headers, they are here

Data: actual data carried in the packet

1. What is missing that we had in IPv4?

89

IPv6 fragmentation header (ID 44 in the NextHeader field):

Next header (8 bits) | 00000000 | offset (13) | 00 | M bit (1)

Ident (32 bits)

So, the Next header field would contain the ID for the next header in the packet. If no such header

exists, the value is set to the transport layer protocol (such as 6 for TCP).

IPv6 Addresses

128 bits long now…whew, we have a lot of space with which to work now

Certain prefixes of IPv6 addresses are meaningful: (not exhaustive list)

PREFIX SIGNIFICANCE

000…000 (128 bits) Unspecified

000…001 (128 bits) Loopback

11111111 (8 bits) Multicast – address a group of hosts together; start with byte of all 1s

1111111010 (10 bits) Link-local addresses: used by devices that need to networked within a

private domain (for routing/forwarding internally within a network), but that

do not need to communicate globally in the Internet

Most others Global unicast addresses

Notation for IPv6: hexadecimal representation (each digit represents one 4-bit chunk)

Example:

35CD:232E:4411:AC06:9125:ED27:2233:43CA

For long runs of zeros, abbreviate with ::

Original address:

35AB:0000:0000:0000:0000:0000:45CC:2211

Abbreviated address:

35AB::45CC:2211 //can only abbreviate one run of zeros

Can embed IPv4 addresses in IPv6 as follows:

::FFFF:128.46.3.25

The last 32 bits are written in decimal IPv4 notation and the double colon at the beginning means a run

of zeros at the beginning.

2. How would you organize the 128 bits of address space?

90

Consider grouping IPv6 addresses based on AS/ISP:

 Pros:

 Cons:

Consider grouping IPv6 addresses based on geography:

 Pros:

 Cons:

So, IPv6 uses a combination of these practices:

Internet Assigned Numbers Authority (IANA) allocates address space to each regional registry:

RIPE NCC (EMEA)

APNIC (Asia Pacific)

ARIN (North America)

LACNIC (Latin America)

AfriNIC (African Region)

www.iana.org

So, IPv6 addresses that can be assigned as global unicast by IANA:

2000::/3 (meaning the first 3 bits are 001)

Generally, the first part of the address indicates the regional registry.

The second part indicates the ISP.

The third part indicates the site prefix (actual customer/company)

The fourth part may be a subnet, if customer/company wants to sub-divide network (usually 16 bits)

The fifth part is the host part: it is 64 bits long, so this can support the full MAC address. [the 48-bit MAC

address is zero-extended]

http://www.iana.org/

91

Other benefits of IPv6

1. Autoconfiguration

2. Routing paths

3. Security

Dealing with IPv4 and IPv6 simultaneously

Clearly, we have not made it to an IPv6-only world. Some routers can handle IPv6, while some can only

handle IPv4.

Dual stack routers: Those that can process v6 and v4 read the version field and handle the arriving

packet with the appropriate interpretation.

Suppose you are A and your network can handle IPv6. Suppose your destination E can also handle IPv6.

Hmmm, but in the middle, some routers can only do IPv4.

 A B C D E

IPv6/4 IPv6/4 IPv4 IPv6/4 IPv6/4

Need to figure out how to take IPv6 packet and get it across the network. Use tunneling (encapsulate

IPv6 packet as payload for IPv4 packet). In figure above, the packet crosses the first link fine. On the

second link, the router B must take the IPv6 packet and jam it into the data portion of an IPv4 packet. It

must create the IPv4 header with the sender as B and receiver D (using IPv4 addresses). The packet is

then sent to C. C views it strictly as an IPv4 packet and sees that the destination is D, so it forwards it to

D. D is a router and not a final destination, so D knows that it needs to inspect the payload to determine

92

where to forward the packet. It strips off the IPv4 header and sends the payload of the packet to

destination E (which was the original IPv6 packet sent by A).

Today: about 33% of google Internet users use IPv6 packets. US is about 45% adoption. There is no

“transition” day where all IPv4 routers/hosts turn off and IPv6 routers/hosts turn on. It will take some

time to get all equipment to the point where it can handle IPv6.

https://www.google.com/intl/en/ipv6/statistics.html

http://www.worldipv6launch.org/measurements/

https://www.google.com/intl/en/ipv6/statistics.html
http://www.worldipv6launch.org/measurements/

93

CS 445: Network Address Translation

Common scenario: home computers use “private” IP addresses, NAT connects home to ISP using a single

external IP address

Keep an internal/external table (IP address + TCP port)

What host thinks: 192.168.1.12 : 5523

What ISP thinks: 44.25.80.3 : 1500

 Need ports to make the mapping one-to-one since there are fewer external IPs

Caution: can only get incoming packets after an outgoing connection is set up; makes running servers

with fixed IP addresses challenging; not so good with connection-less services; breaks applications that

have dedicated IP addresses (example: FTP)

Benefits: relives IP address pressure, many home devices behind NATs and only communicate within the

home, easy to deploy

94

CS 445: Multicast

1. Say the top node wants to send the same data (usually things like streaming media) to five of the

other nodes in the network.

In the Unicast model, what would happen?

2. What networked applications have a one-to-many service model?

3. What networked applications have a many-to-many service model?

IPv4 Multicast Addresses

Start with 1110 (address range 224.0.0.0 to 239.255.255.255)

28-bits of network address: usually determined by out-of-band registration (for example, a web app has

an explicit join procedure to a specific multicast address; an online game lets players join specific

groups)

Multicast Routing

Distance Vector (early approach): flood and prune idea

1) Flood network with multicast packets

2) Prune back networks with no hosts who want to receive packets for that multicast group

95

Routers only forward MC packets on links that form part of a shortest path somewhere (at least packets

are not looping back to the sender and back to routers). But, goodness, that is still a lot of traffic that is

unnecessary.

Think about the number of typical hosts in a multicast group versus the size of the Internet.

PIM-SM (Protocol Independent Multicast – Sparse Mode)

Instead of creating a giant tree of all networks and then pruning, routers explicitly join the MC

distribution tree through JOIN messages.

Each domain has a designated Rondezvous Point (RP).

A shared tree is created (one tree per group to start, instead of one tree per sender).

Suppose we have the following connection of routers:

 RP

 R1 R2

R3 R4 R5

Here’s the sequence of events that happen in PIM-SM:

1) R3 sends Unicast JOIN message for multicast group G to RP.

2) R1 sees this message and creates entry in forwarding table (*, G, R3), meaning * for anyone can

be the sender, G is the multicast address, and R3 is the next hop.

3) RP sees this message and creates entry in forwarding table (*, G, R1), meaning * for anyone can

be the sender, G is the multicast address, and R1 is the next hop.

4) R4 sends Unicast JOIN message for multicast group G to RP.

5) R1 sees this message and adds outgoing entry to R4 for group G: (*, G, {R3, R4}). So, now R1

would forward a multicast IP addressed packet to R3 and R4.

6) Suppose sender S is connected to R5 and wants to send a packet to multicast group G. The

packet has in its header address G as the destination.

R

P

96

7) R5 does not know how to forward this (no entry in forwarding table for group G), so sends to

the RP, via tunneling. It slaps on a new IP header with RP as the address (embedding the original

IP packet as the payload).

8) RP receives the packet and sees that it is destined for the RP. Since it is a router and not a host,

it extracts the payload and sees that the packet is destined to multicast group G.

9) Then RP forward the extracted packet to R1. R1 receive it and see that it is for group G and then

forwards it to R3 and R4.

OK, that works. But, what if sender S is sending lots of data (what if this is streaming video?). Tunneling

and extracting data is extra work for the routers, so there are some optimizations:

10) When the RP gets the tunneled packet, it sends a JOIN to R5. R5 used its IP address in the

tunneled packet, so RP knows who created the tunnel. This JOIN message has (S, G) in the body,

meaning that sender S to group G are the packets you should forward.

11) R2 receives it and puts (S, G, RP) in its forwarding table and forwards the JOIN message to R5.

12) R5 receives it and puts (S, G, R2) in its forwarding table.

Now, when S sends to G, R5 can forward directly to R2, who forwards directly to RP, who then carries

out the forwarding as before.

Also, with specific (sender, MC group, next hop) entries, each router can create source-specific trees, so

the data paths from each sender are minimized.

4. Benefits of PIM-SM:

5. Drawbacks of PIM-SM:

97

CS 445: UDP

So far, we have covered:

Link Layer ⁪ [done]

Network Layer⁪ [done]

Transport Layer (starting today)

Thus far, we have concerned ourselves with protocols running within a network (link-layer such as

Ethernet and network layer such as IP). Now, we will turn our attention to end-to-end protocols (what

happens at the end-hosts). This brings us to the transport layer where there are two protocols: UDP and

TCP. We’ll look first at UDP.

Why do we need transport-layer protocols? _____________________________

Best-effort model

It can drop packets, it can re-order packets, duplicate packets could be received, packets have a

max size, packets may have long delay through network

Hmmm, well – would you want your apps to have to deal with all these network issues?

What might we want in a service model at the transport layer?

1) Deliver only one copy of each message (packet)
2) Support arbitrarily long messages
3) Support synchronization between sender/receiver
4) Allow receiver to apply flow control (don’t sent me too much at once!!)
5) Allow multiple end-to-end processes on a host (in other words, I would like to use my email

client, my web browser, my media player all at once)

UDP – User Datagram Protocol

 Provides demux support for hosts running multiple applications

SrcPort (16 bits) | DstPort (16 bits)

Length (16 bits) | Checksum (16 bits)

 Length – total length of packet in bytes

 Checksum calculated over UDP header, the message, and part of IP header (optional in IPv4,

mandatory in IPv6)

98

Ports allow multiple applications to run on the same host. For example, DNS messages come in on port

53 and mail comes in on port 25.

How to learn port numbers?

- use well-known numbers that are published as standards
- port-mapper that accepts general connection and then replies with the right port number to

use

UDP gives us unreliable service – if queues at the end host get full, packets are dropped.

So, let’s see what the host needs to do now:

App1 App2 App3

Port idx port idy porti idz

<>

<> <> <>

<> <> <>

<> <> <>

 UDP (figures out which queue to put the incoming packet into based on the port number)

If the queue is full, the message is dropped.

UDP is connection-less:

• Messages may be lost, reordered, duplicated

• Limited message size (datagram size)

• Can send regardless of receiver state

Sockets, remember, allow apps to attach to the network at different ports.

99

CS 445: Well-Known Ports / System Ports

Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login

25 SMTP Email

53 DNS Domain name service

80 HTTP Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure web

100

CS 445: TCP (reliable byte stream)

TCP Segment format:

SrcPort (16) | DstPort (16)

SequenceNum (32)

Acknowledgment (32)

HdrLength in words (4) | 000000 | Flags (6) | AdvertisedWindow (16)

Checksum (16) | UrgPtr (16)

Options (variable)

Data

Flags:

SYN open

FIN close

RESET reset (receiver is confused and wants to abort)

PUSH signal receiver to notify process

URG urgent data

ACK acknowledgment (pay attention to that field)

TCP Properties

1. connection-oriented

2. multiple processes

3. reliable delivery

4. supports flow control (no over-running receivers)

5. in-order delivery

1. Connection-oriented

a. 3-way handshake to establish connection from sender to receiver

Sender Receiver

 SYN = 1, SeqNum = x

 SYN = 1, ACK = 1, SeqNum = y, Acknowledgment = x + 1

 ACK = 1, Acknowledgment = y + 1

101

Acknowledgment field identifies the next sequence number it expects to get.

Timer is scheduled for the first two segments; if no ACK received, segments are re-sent.

Starting sequence numbers are chosen at random (x and y), to minimize risk of duplicating

segment numbers from a previous TCP connection between the two parties.

b. When one side is finished sending data, it sends a segment with FIN = 1

c. See below for state diagram for TCP connections. Edges are labeled with event/action pairs.

States are labeled as rectangles.

Figure 5.7 from Computer Networks: A Systems Approach (6th edition) by Peterson and Davie

102

2. Support for multiple processes

SrcPort and DstPort provide for multiple simultaneous applications, such as UDP

3. Reliable delivery

Uses the sliding window algorithm we saw earlier in the semester.

Sender

 LastByteSent

 LastByteAcked LastByteWritten

LastByteAcked <= LastByteSent

LastByteSent <= LastByteWritten

Receiver

 NextByteExpected

 LastByteRead LastByteReceived

LastByteRead <= NextByteExpected

NextByteExpected <= LastByteReceived + 1

Receiver sends Acknowledgment = x [sequence number it is waiting for] means it has all

segments up to segment (x-1).

103

4. Supports Flow Control

Do not want sender way ahead of receiver (do not overrun receiver’s buffer).

Sender adjusts size of sliding window based on feedback in the AdvertisedWindow field.

Receiver

 NextByteExpected

 LastByteRead LastByteReceived

 ------------- maxRcvBuffer-------→

Goal: ensure LastByteReceived – LastByteRead <= maxRcvBuffer

AdvertisedWindow = maxRcvBuffer – ((NextByteExpected – 1) – LastByteRead)

“All available space minus what is in the buffer”

Then, on the sender side:

 LastByteSent

 LastByteAcked LastByteWritten

Goal: LastByteSent – LastByteAcked <= AdvertisedWindow [do not get too far ahead]

EffectiveWindow = AdvertisedWindow – (LastByteSend – LastByteAcked)

104

When ack arrives back to sender, advance LastByteAcked, updated AdvertisedWindow, and

calculate EffectiveWindow. If EffectiveWindow > 0, send more data.

105

Example: to keep things simple, the advertised window is based on # of segments and not bytes

Sender Receiver

 SequenceNum = 1

 Acknowledgment = 2, AdvertisedWindow = 3

 SequenceNum = 2

 SequenceNum = 3 Ack = 3, AW = 2

 SequenceNum = 4 Ack = 4, AW = 1

 Ack = 5, AW = 0

At this point, the sender would stop sending segments.

Sender waits and periodically sends segments with 1 byte just to get an ack back with an

updated window size.

5. In-order delivery

Applications buffer data to read it sequentially (to match the order it was sent).

Note that TCP also provides single packet delivery (only one copy of each segment is kept in

buffer) and can support arbitrarily long data streams.

106

Activity 18: TCP, Sequence Numbers, Advertised Windows, Re-transmissions

Answer the questions below:

1. What are the implications of a limited size sequence number?

2. What are the implications of a limited size advertised window?

3. When should TCP segment transmissions be triggered (how much data to collect on sending host

before sending it in a segment)?

4. When should a TCP segment be re-transmitted (how long should you wait for an ack)?

107

CS 445: TCP Sequence Numbers, Advertisement Windows, and Retransmissions

32 bits for the sequence number in TCP, max wraps back around to 0. Field supports ~4 billion unique

sequence numbers.

Question 1: Suppose you sent 1 byte per segment on a link with speed 100 Mbps. How long will it take

for the sequence number to wrap around?

Question 2: What about a link with speed 2.5 Gbps? Is this long enough?

Solution to limited Sequence Numbers: Timestamp field of 32 bits indicates clock time of sender. If

receiver gets two segments with the same sequence number, then it can differentiate them with the

timestamp.

Advertised Window (16 bits)

Question 3: What is the largest number of bytes that the AW can advertise?

We would like to “keep the pipe full”, so it may be that the network can handle more data than what

you found in question 3. Let’s look at some delay x bandwidth products (this gives us the size of the

pipe) for various speeds with RTT of 100-ms:

Bandwidth Delay x Bandwidth

1.5 Mbps 18 kB

10 Mbps 122 kB

100 Mbps 1.2 MB

108

Question 4: Could the AW field support keeping the pipe full at 1.5 Mbps? How about 10 Mbps?

Solution for limited AW field: Use scaling factor for AW as an optional field. For example, if the optional

field has the value of 16, it really means the AW is 16 * the number given in the AW field.

When to trigger TCP segment transmissions

Question 5: What is the worst case payload for a TCP segment in terms of header/payload ratio?

The best case would be to fill the TCP segment so that the TCP + IP + frame layer headers and the

payload fit into a segment that is no bigger that the MTU.

Max Segment Size = MTU of network – size of headers

Possible segmentation algorithm:

If AW >= MSS,

 Accumulate MSS bytes of data and send one TCP segment

If application pushes data (the PUSH bit set),

 Package up bytes left in buffer and send one TCP segment

Else,

 What to do???

Question 6: Suppose the receiver sends an ack with an AW of MSS / 2. Should the sender send MSS / 2

bytes or wait until a full set of MSS bytes are collected?

Question 7: Now suppose the receiver sends an ack with an AW of 2 bytes. Should the sender send the 2

bytes or wait until having a bigger set of bytes?

109

Silly window syndrome: ack with a small window size – keeps a small “container” in the system for

sending data.

Improvement:

Nagle’s Algorithm:

If AW >= MSS and data >= MSS, send full segment.

If app pushes data, send segment.

Else if there is un-acked data in flight,

 Buffer data until ack arrives

Else

 Send buffered data now

What is happening? Treat ack as a trigger (self clocking) to send more data, so wait for ack before

sending data. Can send a small amount of data if there are no segments in flight.

When to re-transmit a segment? (How long to set the timeout)

In a point to point link, we could set the timeout based on the calculated RTT.

Hmmm, but in general, the segments are going through a network that can experience delays.

Original TCP:

Idea: keep a running average of the RTT and compute timeout based on RTT

SAMPLE_RTT = (time segment acked) – (time segment sent)

EST_RTT = (alpha)*EST_RTT + (1-alpha)*SAMPLE_RTT

(alpha is a smoothing value of old estimate and new estimate. Usually, alpha is between .8 and .9)

Set the timeout to twice the EST_RTT:

TIMEOUT = 2 * EST_RTT

Question 8: What flaw(s) do you see in setting the TIMEOUT in this way?

Think about the acknowledgments – don’t know if they are from the first transmission or second

transmission (in calculation of SAMPLE_RTT). Could cause long EST_RTTs.

110

Karn/Partridge Algorithm:

Idea: Don’t take sample RTT for retransmitted segments and use exponential backoff for timeout when

segment is not acked in time.

Same as original algorithm except:

 SAMPLE_RTT only calculated for non-retransmitted segments.

 If no ack for a segment, TIMEOUT = 2*TIMEOUT

Jacobson/Karels:

Idea: Take into account the variance of the RTT. Why? If variance is small, put more trust into the

SAMPLE_RTT.

DIFF = SAMPLE_RTT – EST_RTT

EST_RTT = EST_RTT + (delta * DIFF) // update ESTRTT

DEV = DEV + delta*(|DIFF| - DEV) // calculate deviation

0 < delta < 1

TIMEOUT = u * EST_RTT + p * DEV // u = 1 (normally), p = 4 (normally)

Question 9: If the variance is small, does this calculation for TIMEOUT come close to the EST_RTT?

Question 10: Assume EST_RTT = 90 and SAMPLE_RTTs are 200. What are the next 3 values of TIMEOUT?

Assume DEV = 25 and delta = 1/8 and use Jacobson/Karels:

Measuring Time (how do we get sample_rtts?)

The sender can put a timestamp in the header of the TCP segment and the receiver can use the sender’s

timestamp in the ack (so the sender can just use its own clock to determine the RTT).

111

Those other flags in TCP

The PUSH flag – application can push data (can be used for record boundary indicator if want data to be

interpreted in special chunks rather than a byte stream)

The URG flag – application can send urgent or out of band data (can be used to send special signal to

receiver)

Practice:

1. How many bits are needed in the advertised window field for 1 Gbps bandwidth and 140 ms RTT?

2. How much data can be sent in 60 seconds?

3. How many bits would be needed for the sequence number?

112

Activity 19: Congestion and Queuing

Congestion Control: keep senders from sending more data than network can handle (note: this is

separate from flow control where sender does not over-run the receiver’s capacity)

Question 1: What happens at routers when the network is very busy? What does a sender using TCP do?

Flow: sequence of packets between source and destination pair (usually follows same path through

network)

Routers can watch what is happening locally (view packets as flows just using IP addresses of sender and

receiver)

Let’s look at different approaches:

1. First, who should manage the resources?

HOSTS (end) --ROUTERS (inside)

2. How does the host determine capacity of the network?

RESERVATIONS -- FEEDBACK

3. How is network capacity measured?

WINDOW-BASED --- RATE-BASED

113

Question 2: What design choices do we make for computer networks using IP?

Question 3: Suppose you want to maintain a network that provides a minimum quality of service. What

design choices would you make?

Ideally, we want high “power” in a computer network, where power = throughput / delay. Get lots of

traffic through the network without waiting a long time.

Now, let’s turn our attention to fairness.

Question 4: How would you define fairness for flows?

We have a mathematical way to calculate “fairness”. If each flow gets throughput Xi, then we can use

the following fairness function:

F(x1, x2, x3, … xN) = Sum(xi)2 / N * Sum(xi
2) // square of sums divided by (N times the sum of the squares)

Question 5: Assume all flows get the same throughout T and there are N flows. What does the fairness

function equal?

Question 6: Assume now that there are K flows that get throughput T and (N – K) flows get throughput

0. What does the fairness function equal?

114

Now, given that routers have finite resources, they can drop packets. Also, routers forward packets, so

routers need to make a few decisions. The first decision is which packet to forward next. The second

decision is which packet to discard should the buffer get full. These are known as the scheduling policy

and the drop policy.

Question 7: Determine at least one scheduling policy for the router. What are the pros/cons of this

policy? Is it “fair”? Is it simple?

Question 8: For your scheduling policy in question 7, what would you decide for the drop policy? Which

packets get dropped from the queue if it becomes full?

Describe the Pros/Cons of the Scheduling and Drop Policies

FIFO

Pros: Cons:

Priority Queuing

Pros: Cons:

Fair Queuing

Pros: Cons:

115

Activity 20: Fair queuing (one queue per flow):

Notation:

Pi = length of packet i in bits

Si = start time for transmitting packet i

Fi = Si + Pi = finish time for transmitting

If a packet is waiting in a queue, then its time value is:

Fi = Fi-1 + Pi //time of previous packet finish plus size of packet

If a packet has not arrived at the queue, then its time value is based on its arrival time:

Fi = Ai + Pi

So, Fi = max(Fi-1, Ai) + Pi

Router calculates the F values for each packet and chooses to transmit the lowest F value from any of its

queues.

Example: 2 flows

F1 queue: P3(size 6) | P2(size 5) | P1(size 3) | FRONT OF QUEUE

F2 queue: P5(size 3) | P4(size 10) | FRONT OF QUEUE

Calculate the finish times for each packet:

P1

P2

P3

P4

P5

What is the order of transmission with fair queueing?

116

Suppose the following packets arrive at the router and it uses fair queuing.

Packet Size Flow

1 200 1

2 200 1

3 160 2

4 120 2

5 160 2

6 210 3

7 150 3

8 90 3

What are the finish times of each packet?

1

2

3

4

5

6

7

8

What is the order of packet forwarding?

117

Now, we could assign weights to the flows, so each flow has a potentially different level of priority. Note

that this is no longer fair, but it is called weighted fair queuing. Assume flow 2 has twice the weight as

flow 1 and flow 3 has weight 1.5 times flow 1. Thus, W(1) = 2, W(2) = 4, W(3) = 3. The same packets

above would now have weights of:

Packet F_i W_i

1 200 100

2 400 200

3 160 40

4 280 70

5 440 110

6 210 70

7 360 120

8 450 150

(divide the finish time by the weight to get W_i)

What is the order of packet forwarding?

118

CS 445: Congestion Control (TCP)

Issue: Network can get congested with traffic

What can we do about it? (react to network conditions with sending rate)

Idea: Send packets into network, react to observable events

Use acks to pace transmission (self-clocking, acks determine capacity of network)

Issue: Network conditions change over time, cannot poll routers directly, a bit more difficult to get

feedback from network than simply from the receiver (like in flow control). So, we need to get feedback

via the acks and timeouts.

119

Overview of four TCP congestion control mechanisms:

1. Slow Start – used to get to an equilibrium sending rate

2. Additive increase / multiplicative decrease – used to react to network by slowly increasing congestion

window and dramatically decreasing congestion window when network is busy

3. Fast retransmit – start retransmissions before timer fires

4. Fast recovery – less abrupt reduction of congestion window size

TCP Tahoe – uses mechanisms 1/2/3

TCP Reno – uses mechanisms 1/2/3/4

Slow Start

Goal: quickly determine appropriate send window size for network

Idea: Have a congestion window (CW)

Double CW for each ack received (grow window slowly, even though this is exponential growth)

Send min(AW,CW) – whichever is smaller (receiver or network is bottleneck)

CW doubles every round trip:

Source Destination

Question 1: Why should we use slow start?

120

Additive Increase / Multiplicative Decrease

Goal: Alter CW size after slow start phase to react to changes in network conditions during connection

Idea: Ack means network not congested, Lost segment means network is congested

Strategy:

On each RTT with acks, CW = CW + 1

On each timeout (lost segment), CW = CW / 2

Note: we still use MaxWin = min(AW, CW), so we guarantee not overrunning the network and not

overrunning the receiver.

EffectiveWindow = MaxWin – (LastByteSent – LastByteAcked)

Also note: CW here is in # segments, but in reality the CW is measured in bytes. So, instead of increasing

by 1, we would increase by MSS.

Combination of SS and AIMD:

Assume connection already established.

If connection is open and no packets in flight, SS is used (ramp up faster)

If a packet ack times out.

SSThreshold = CW / 2 where CW is the size prior to the loss.

CW = 1;

SS is used when CW <= SSThreshold

AI is used when CW > SSThreshold

Question 2: See TCP trace on page 129. Explain what is happening from 0 to 5.6 seconds.

121

Fast Retransmit

Question 3: Look at the second TCP trace below. What is different?

Goal in fast retransmit: learn of lost segments before timeout triggers

Ah ha, need help from receiver now.

Situation: most packets are getting through, but a few are lost. It would be nice to know about the lost

packets, so sender can retransmit them.

Original TCP: receiver only acks for next in-order segment, never acks for out-of-order segment

Now: ask receiver to send the same ack sent last time if it receives out of order packet (duplicate acks)

Sender can now use duplicate acks as more information about the network. A dack means that the

receiver got something, but it still waiting for the sequence # in the ack. If we get another dack, the

receiver got something, but not the segment with the sequence # in the ack…. So , the sender can

assume that the segment is lost before a timer fires for retransmission.

Use 3 dacks to indicate a lost segment.

Let’s look at the traces again …. The long lines of no data being sent are eliminated, thus improving

throughput.

122

Fast Recovery

Idea: Well, if the sender is getting dacks, something is getting through, so instead of dropping CW to 1

when packet is lost, drop CW by half instead (eliminate slow start phase).

1. When receive 3 dacks, retransmit lost segment.

2. Set CW = (CW / 2) + 3 [where 3 accounts for 3 segments of data being acked]

3. Send data if EffectiveWindow > 0

4. When ack arrives for lost segment, use AIMD

Result: only have SS phases on startup and on real timeouts

Question 4: Look at the second graph. What would be different if TCP used fast recovery? Would there

be slow start at 3.8 seconds or 5.5 seconds?

Summary

4 mechanisms: SS, AI/MD, FastRetransmt, FastRecovery (TCP Tahoe –first three, TCP Reno – all)

123

TCP Congestion Control Figures

Timeline of TCP with SS and AI/MD

 Image from Computer Networks: A Systems Approach (6th edition) by Peterson and Davie

Dashed lines at top of figure indicate when packets are in transit.

Dots indicate timeouts.

Full vertical lines indicate packets that are lost.

Timeline of TCP with Fast Retransmit

Image from Computer Networks: A Systems Approach (6th edition) by Peterson and Davie

What would the TCP trace with fast recovery look like?

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30

40

50

10

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30

40

50

10

CW

Size

(KB)

SS
SS SS AI

AI

AI/MD

SS

124

CS 445: Congestion Avoidance and Quality of Service

Congestion Avoidance

TCP Tahoe and TCP Reno use congestion detection to alter sending rate. But what if try to avoid

congestion by detecting when segments might get lost?

How could we do this? _______________________________

What other info have we not used yet? _____________________

Idea: Measure change in RTTs and use this info to avoid congestion

Goal: Match sending rate and available bandwidth

BaseRTT = RTT of packet when network not congested (usually running min or RTT of first packet sent)

ExpectedRate = CW (in bytes) / BaseRTT

(Throughput when not congested)

ActualRate = # bytes in transit / SampleRTT

Send a distinguished packet P at clock time T, count # bytes sent in all packets from time T on until ack

for packet P arrives at time T’. Then, SampleRTT = T’ – T.

Diff = ExpectedRate – ActualRate

 Alpha is lower bound on Diff

 Beta is upper bound on Diff

If Diff < alpha, CW = CW + 1 // increase linearly

If Diff > beta, CW = CW – 1 // decrease linearly

Else, CW = CW // do nothing

What does this do? Keeps sending rate between alpha and beta

But how do we determine alpha and beta?

Experimentally:

Alpha = segment size / BaseRTT

Beta = 3*segment size / BaseRTT // 3*alpha

Can think of alpha as the minimum buffers in network and beta as the maximum number of buffers in

network at current time.

125

If segment is lost, use multiplicative decrease.

(See handout below for congestion figure)

This version with congestion avoidance is called TCP Vegas.

Random Early Detection

What if routers help senders?

Idea: Routers drop packets prematurely to alert sender know sooner that router is busy.

At router, calculate:

AvgLen = (1-w)*AvgLen + w*(SampleLen) where 0 < w < 1

 (weighted average of queue length)

Traffic is bursty, could be full and the empty then full then empty … the running average gives sense of

longer lasting congestion.

Now, routers will drop packets before the queue(s) get(s) full.

| MaxThreshold MinThreshold |||||||||||||||||

If AvgLen <= MinThreshold, queue packet

Else if MinThreshold < AvgLen < MaxThreshold, calculate probability p for packet (based on fullness of

queue) and drop with probability p

Else drop packet

Probability of packet getting queued:

 1

0

Calculation for probability p a little more complicated (includes time since last packet was dropped). See

textbook for more details.

126

Quality of Service

Some apps require guarantees about the network

 Example: videoconferencing, voice over IP

But, the Internet is a best effort model

 Contrast to phone network: allocate resources to individual flows, guarantee on latency and

guaranteed delivery

Voice over IP – need guarantee on latency (too hard to have conversation when receiver gets data too

late)

 One solution: remove pauses at playback point (distorting signal at playback)

 Delay-adaptive

Videoconferencing – can drop frames or reduce quality

 Rate-adaptive

Approach 1: Differentiated Services – allocate resources to certain classes of traffic

 Put info in header about priorities of data (some get expedited forwarding)

 Routers prioritize forwarding based on this info (priority queuing)

But, then who gets to assign this info in the header?

 Sys admins

 Payment by customer

 Routers at edges of network

 …can lead to misuse (so, in general, there is no minimum quality of service)

Approach 2: Reservations – then routers need to maintain lots of state about individual flows

 Not widely deployed, conflicts with best-effort model

 Still under discussion/debate (for over 10 years)… could see a resurgence depending on new

needs of applications

Return to the discussion of TCP…

 Streaming generally use UDP (no reliability and no congestion control)

 Means that TCP connections get smaller and smaller throughput in the network … some

research into protocols for doing fairness per flow

127

TCP Figures

Images from Computer Networks: A Systems Approach (6th edition) by Peterson and Davie

This leads to the development of TCP Vegas, which tries to control for congestion before a packet is lost.

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0
Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300

100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

1100

500

700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Observed

Throughput

Congestion

Window

Queue size at a

router

Notice that as the CW increases here, the

queue at the buffer is growing to the point

where a packet will be dropped.

128

TCP Vegas

 Images from Computer Networks: A Systems Approach (6th edition) by Peterson and Davie

The congestion window now does not fluctuate as much (top figure). The graph shows the additive

increase and additive decrease used to avoid congestion.

The bottom figure shows the expected throughput (light line), the actual throughput (dark line), and the

thick region indicates the rates bounded by alpha and beta. The difference between the actual rate and

the expected rate is used to determine how to change the congestion window.

Notice the correspondence between the graphs. At 1.5 seconds, the actual rate is in the shaded region,

so the CW does not change. When the actual rate drops below the shaded region at 2 seconds, the CW

is decreased (as a drop in actual rate indicates network congestion).

70
60
50
40
30
20
10

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

240

200

160

120

80

40

Time (seconds)

129

CS 445: Compression Techniques

Today: Networks are limited resources. Perhaps the applications can try to send as little data as

possible.

App -> Compressed Data -> -----------------------Network ------------------------→ Decompression -> App

Question 1: Why is compression useful in computer networks?

 Compression

 Lossy Lossless:

 Cannot decompress exactly Can decompress exactly

Question 2a: Provide examples of data that can handle “lossy” compression:

Question 2b: Provide examples of data that can only handle “lossless” compression:

Lossless #1: Run-Length Encoding

Idea: Encode strings of same symbol with number of that symbol followed by the symbol

Example:

When does it work well?

130

Lossless #2: Differential Pulse Code Modulation (DPCM)

Idea: Define a reference symbol and encode the differences to the reference symbol

Example:

When does it work well?

Lossless #3: Delta Encoding

Idea: Encode each symbol based on difference from previous symbol

Example:

When does it work well?

Lossless #4: Dictionary

Idea: Create a dictionary of all symbols, mapping of index to symbol and use indices to encode

Example:

When does it work well?

131

Lossless #5: Huffman Coding

Idea: Create binary tree based on symbol frequencies and use tree paths to encode symbols. The higher

the frequency, the shorter the encoding.

Example:

Symbols are A, B, C, D with frequencies of A = .25, B = .15, C = .20, D = .40

At each step, use two smallest value nodes to combine them via a parent node.

A (.25) B (.15) C (.20) D (.40)

The two smallest are B and C, so we combine them

 B/C (.35)

B (.15) C (.20)

So, now we have A (.25), B/C (.35), and D (.40). The smallest two are A and B/C, so they get combined.

 A/B/C (.60)

 B/C (.35) A (.25)

B (.15) C (.20)

Now, we have A/B/C and D, so they get combined:

 A/B/C/D (1)

 A/B/C D (.40)

 B/C A (.25)

B (.15) C (.20)

Now, we have a tree, so we label the left branches with 0 and the right branches with 1. The path

indicates the code for each symbol:

A: 01

B: 000

C: 001

D: 1

Example data: AABCDAA

What bits are sent?

What bits are decoded?

When does it work well?

132

Activity 21: Huffman Coding Practice

Suppose a text file is compressed using dynamic Huffman coding (the tree is created based on the data).

The contents of the file include the letters {a, b, c, d, e, f}. Suppose the frequencies are as follows:

Letter Frequency

a .10

b .20

c .32

d .25

e .08

f .05

1. Create the Huffman tree. Put labels of 0 or 1 along each edge.

2. What is the encoding of each letter to bit sequence?

Letter Bit sequence

a

b

c

d

e

f

133

3. Assume the first set of characters in the file is as follows. Produce the encoded bit string for this

sequence.

abacfeddcb

134

Lossy #1: JPEG (image compression)

Question: When you take digital pictures, do you save the file in raw format or jpeg format? How much

smaller are the jpeg images? Try this out sometime to see the differences in sizes of a raw photo and a

photo that uses jpeg encoding/compression.

OVERVIEW OF JPEG:

 -> 1. DCT -> 2. Quantization -> 3. Encoding

 JPEG formatted picture

Original Image

For now, let’s focus on grayscale images. Each pixel in an image is a value between 0 and 255. (Color

pictures are just 3 separate arrays, each passed through the JPEG compression algorithm)

The picture is broken into blocks of size 8 x 8 pixels (little squares).

Step 1: DCT = Discrete Cosine Transformation

Input: pixel values

Output: coefficients of spatial frequencies

 Think of image as being a vertical and horizontal signal.

 Imagine you are an ant traveling from left to right on the 8 x 8 block.

 If the values do not change very much, there are no high frequency components to the signal.

Actual math (more info in book if you care):

P(x, y) is the pixel in the xth row and yth column

DCT(i, j) = (1/sqrt(2N)) * C(i)*C(j) * (sum_x=0_n-1) (sum_y=0_n-1) P(x,y) * cos(((2x +

1)i*pi)/2N)*cos(((2y+1)j*pi)/2N)

C(i) = (1/sqrt(2)) if i == 0 and 1 otherwise

DCT 8 x 8 block

of pixels
8 x 8

coefficients

135

So DCT(0,0) is the average of all the 64 pixels in the block (called DC coefficient). The other DCT values

(called AC coefficients) are the spatial frequencies.

It turns out that the high frequency components are less important to the image. So, we can keep the

lower coefficients more precise and drop the precision of the higher coefficients.

Step 2: Quantization

Quantum for 8 x 8 block:

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

…. (pattern continues)

…

17 19 21 23 25 27 29 31

Compression step (this is the lossy part):

QuantizedValue(i, j) = round(DCT(i, j) / Quantum(i, j))

Then, we store the quantized value. So, even the DC coefficient will be divided by 3. When

decompressing, we simply multiply the QuantizedValue by the Quantum.

Step 3: Encoding

This last step encodes the 8 x 8 DCT quantized coefficients in a more compressed (but lossless) manner.

 DC AC

AC

Low freq components

Low

High freq components

High

136

The idea is that similar quantized values will be close together in this pattern. Uses run length encoding

on these, since many of the later coefficients in the zig zag pattern have the value 0.

Then, the actual coefficient values (#s) are encoded using Huffman coding (another lossless

compression).

The DC values are encoded using delta encoding (another lossless compression).

Back to color images: a standard image has pixels with red, green, and blue values. Another 3-

dimensional set is called Y (luminance), U (chrominance), and V (chrominance). It turns out that humans

can perceive light/dark better than color, so one of the arrays just contains brightness info (the Y

component). The U and V components create colors.

Each Y, U, and V image is compressed using JPEG independently.

In practice, JPEG can compress with a ratio of 30:1 (but it totally depends on the image).

Question: What images would achieve a higher compression ratio using JPEG?

Question: What images would not achieve such a high compression ratio using JPEG?

137

Lossy #2: MPEG

Now we focus on a series of images that comprise a video. Usually, 30 frames/second is visually smooth

for humans.

Question: What data in a video can you take advantage of for compression?

Frame 1 – Frame 2 – Frame 3 -…. -> MPEG -> I, B, P Frames

I frame = reference frame (just a JPEG compressed image)

P frame = difference to I frame

B frame = interpolation between previous I/P and next I/P frame

Compressed video might have this order:

I B B P B B I

I is independent – decompressed is regular image

The first B frame uses the first I frame and P frame as reference and encodes difference

The second B frame uses the first I frame and P frame as reference and encodes difference

The P frame uses the previous I frame

So, the actual order in which the frames are encoded is:

I P B B I B B

So, the frames that you need for reconstruction come before the frame to be reconstructed.

Encoding of MPEG usually done ahead of time (since the frames need to be reordered). Note:

videoconferencing will have very few B frames, since you need “after” data for this to work.

Macroblock in MPEG: 16 x 16 pixels (each encoded independently)

Let’s look at decompression:

If I frame, decode like JPEG

If P frame,

 Let I be previous I frame

 P frame contains differences to I frame, but these differences are to a reference location

138

 (Might have object move between the P frame and I frame)

 Each macroblock has a motion vector and encodes difference to motion vector

 (Example: motion vector might be (1, 3) which means use as reference 1 macroblock to the left

and 3 macroblocks up). Then the P frame’s macroblock encodes difference to I’s macroblock 1 left and 3

up.

If B frame,

 B frames have for each macroblock:

 Motion vector relative to previous reference frame

 Motion vector relative to next reference frame

 Delta for interpolation

 To decode: P(x,y) = P(x,y) in reference for previous + P(x,y) in next reference

 __

 2

 + delta(x,y)

 (average of reference frames plus difference)

 (B frames can also just use intra-picture encoding without reference frames, like I frames)

Each frame is independently encoded in three spectra: Y (16 x 16), U (8 x 8), and V (8 x 8)

When sending video data over a network

Can change quantization matrix (for I frames) dynamically to send more or less info (rate adaptive)

Can split video into layers: layer 1, layer 2, … with each layer having adding more detail

Question: What type of MPEG frames could you tolerate losing across a network?

Question: What type of frames is most critical for video reconstruction?

139

CS 445: DNS, HTTP, SMTP covered in labs 9 and 10

See lab handouts and/or textbook for more information about these protocols

140

CS 445: P2P Systems

Question 1: How would you define a peer-to-peer system?

Question 2: What are advantages of a P2P system versus a client-server model?

Question 3: What are the challenges of implementing a P2P system?

Example: Structured Overlays

Unstructured overlays require lots of flooded messages traversing the “overlay” topology and the real

network topology.

Distributed hash tables provide a nice mechanism for distributing file content and for routing. Also, the

hashing determines which hosts should store certain files.

H(X) -> n

X is an object, and n is the node in which the object resides.

Idea: If there are 100 nodes in a P2P system, then hash the objects into 100 buckets. Each node will then

be responsible for storing all objects that are hashed to its node’s value up to the objects for the next

node’s value.

So, what about routing?

Let’s say the object hash values are written in hex.

You are node 891a0. You want to locate object d1259a.

141

Then, you look up in your own table for a node with value starting with d. You fire off a query to that

node. Then, that node looks up d1 in its table and forwards the message. Then that node looks up d12,

etc. Then, let’s say node d12510 gets the message and it retrieves the file with value d1259a.

Note – again, neighbors in this structured P2P system may be on different continents, so messages

might take a while to get through the network. Could try to keep neighbors geographically close.

142

Activity 22: Practice with structured overlays

Suppose a structured overlay is created among 6 nodes and 10 files are stored among the nodes.

A hash function has mapped the node addresses and files to 16-bit values (normally, this would be a

larger space but for the purpose of this activity, we’ll use a smaller range), shown as hex values in the

table below. Remember that in hex, each digit represents one of 16 values (0 through f). Put the node

values with an ‘X’ along the circle in the correct place. Put the object values with an ‘O’ along the circle

in the correct place.

Node Values (hex, decimal):

DADA 56026

10E0 4320

AAAA 43690

8111 33041

1B58 7000

5283 21123

Object Values (hex, decimal):

03E8 1000

6223 25123

2AF8 11000

8D67 36199

1595 5525

5307 21255

E2FF 58111

B037 45111

56CE 22222

0079 121

0

0000

65535

FFFF

32768

8000

Answer these questions:

1. How many files/objects does host DADA store? ______________

2. How many files/objects does host 1B58 store? _____________

3. How many files/objects does host AAAA store? _____________

4. Suppose host 8111 leaves the structured overlay. Which host assumes which files?
__

5. Suppose a new host ABE0 (hex), 44000 (dec) joins the structured overlay. Which files, if any, get
moved to this new host? __

6. Suppose host DADA is looking for file/object 1B60 (hex), 7008 (dec). Host DADA only has entry
10E0 in its routing table, so it sends the query to it. To whom does 10E0 query? ____________
Show the arrows on the circle to represent these queries.

144

CS 445: BitTorrent

Have you used a BitTorrent app? What about this protocol makes file download fast?

How does it work with a tracker?

1. You want the file humangenome.fasta (containing the entire dna sequence of the human

genome). This is a huge file.

2. You search for a “torrent” of this file.

3. You get the humangenome.torrent file, which has the URL of the tracker for this file, the

number of pieces the file is split into, error detection codes for each piece, and the names of the

pieces.

4. Your BitTorrent client then connects to the tracker for this file.

5. The tracker returns a list of peers who make up the swarm for this file.

6. Your client connects to some of those peers (via TCP).

7. Your client connects to a peer with a swarm ID (given by the tracker) to ensure both parties

have/want the same file.

8. Your client receives bitmaps (showing which pieces each peer has) and your client sends a

bitmap of 0000000…000 to the other peers.

9. Your client chooses random pieces from random peers to download.

10. As your client receives pieces, you send a new bitmap of your pieces and now you can be a

supplier of pieces to other peers.

11. Eventually, you will get all the pieces of the file.

That’s how it works with a tracker. You can also get files without a central tracker. These use distributed

hash tables.

1. Your client has a peer-finder process. Upon start-up, a few finder addresses are installed.

2. Once you have found peers, you can search for swarms (based on ID).

3. You can send a message to the peers asking if they know any peers for that swarm.

4. Peers respond with peer IDs in that swarm or peers who are closer to the swarm ID.

5. Then your client can contact those peers.

6. Getting the file happens in the same way (as above).

What are the issues/challenges with BitTorrent?

How does using BitTorrent impact the network differently than a traditional client/server model?

What other P2P systems do you use? How do they work?

145

Activity 23: Network activity

1. What happens when up.edu is typed into a web browser? (think about all the layers of the network)

146

Activity 24: Reflections about the Course

1. What principles about scalable system design will you take away from this course?

2. What skills and knowledge will you apply from this course in later courses and/or profession?

3. We studied several tradeoffs during the semester. Name at least one problem/task we studied that

had multiple solutions. What are the pros and cons of each solution?

147

148

CS 445 Exam Review Sheets
Note: Exam topics may differ as the course progresses. See Moodle for most up-to-date exam

review sheets. See Moodle for sample exam questions.

149

CS 445 Exam 1 Study Guide

Content: Exam 1 will cover chapters 1.1 through 2.8 of Computer Networks: A Systems Approach by

Peterson and Davie. Material will be drawn from readings, the textbook, lectures, posted moodle

resources, and labs.

Procedure: The exam will be conducted during class time, starting promptly at the beginning of the hour.

You may use 1 sheet of 8.5” x 11” paper (both sides) of notes during the exam. The exam is closed-book,

closed-notes (other than your 1 sheet), closed-other resources, and closed-calculator. If you need to

perform computations, you do not need to put the result in final form. For example, you need not

multiply out 220. You can leave it as 220 in your solution. Please come to the exam on time.

Helpful Reminders:

1. Label all calculations with units (if appropriate).
2. A bit has the unit of b and a byte has the unit of B. Be careful to use the correct units in your

computations.
3. M in bandwidth means 106. M in data size means 220.

Topics: This study guide is not a contract – in other words, the exam may include topics not listed below

and some topics listed below may not be covered on the exam. The following list contains the material

covered so far in the course.

• Network requirements

• Network architecture & layers
o OSI (7 layers)
o Internet (4 layers)

• Network Components
o nodes, links, hosts, switches (bridges), routers (gateways)

• Network Data
o frames, packets, messages

• FDM, STDM, statistical multiplexing (protocols for multiplexing flows)

• Network Performance
o latency, bandwidth, throughput, RTT, delay x bandwidth

• Encoding Schemes
o NRZ, NRZI, Manchester, differential Manchester, 4B/5B

• Framing Protocols
o Byte-oriented, Bit-oriented, Clock-based,

▪ Sentinels

• Error Detection
o 2D parity, checksum, CRC

• Reliable Transmission: ARQ
o Stop & Wait
o Sliding Window

• LANs
o MAC addresses (hardware addresses)

150

o Aloha – early version of using a shared resource
o Ethernet (802.3)

▪ CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
o Wireless (Wi Fi 802.11)

▪ CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
o Bluetooth
o CDMA

• Labs 1, 2, and 3

151

CS 445 Exam 2 Study Guide

Content: Exam 2 will cover chapters/sections 3.1 through 4.5 of Computer Networks: A Systems

Approach by Peterson and Davie. Material will be drawn from the readings, the textbook, lectures,

posted moodle resources, and labs. Note that chapters 3 - 4 build on chapters 1 – 2, so earlier material

that is necessary for the concepts in chapters 3 - 4 may be covered on the exam. However, the exam will

focus on material since exam 1.

Procedure: The exam will be conducted during class time, starting promptly at the beginning of the hour.

You may use 1 sheet of 8.5” x 11” paper (both sides) of notes during the exam. The exam is closed-book,

closed-notes (other than your 1 sheet), closed-other resources, and closed-calculator. If you need to

perform computations, you do not need to put the result in final form. For example, you need not

multiply out 220. You can leave it as 220 in your solution. Please come to the exam on time.

Helpful Reminders:

1. Label all calculations with units (if appropriate).
2. A bit has the unit of b and a byte has the unit of B. Be careful to use the correct units in your

computations. M and k represent different numbers in the context of bandwidth versus data
size.

Topics: This study guide is not a contract – in other words, the exam may include topics not listed below

and some topics listed below may not be covered on the exam. The following list contains the material

covered since exam 1.

Network Layer

• Switches (Bridges) and Forwarding
o Forwarding Packets

▪ Datagram
▪ Virtual Circuit Switching
▪ Source Routing

o Learning sources / ports
o Spanning Tree Algorithm (Perlman paper) [if we get to this before exam]

• Internet Protocol (IPv4)
o IP Addresses (Class A, B, C)
o Header Format
o Fragmentation/Reassembly
o Subnets – sharing a class B address among several networks
o CIDR – making use of prefixes as network addresses
o Forwarding tables and forwarding of packets

• DHCP: assigning IP addresses to hosts

• ARP: determining IP address/ MAC address mappings

• ICMP: control messages

• Routing (creating the forwarding tables)
o Intradomain routing

152

▪ Distance Vector

• RIP
▪ Link State

• OSPF

• Dijkstra’s Algorithm
o Interdomain routing

▪ Border Gateway Protocol (BGP)
▪ Autonomous Systems
▪ Hierarchy, relationships/policies among ASes

• IPv6
o Addresses (128 bits)
o Packet header format
o Features

• Multicast routing (if time)

• Labs 4, 5, and 6

153

CS 445 Exam 3 Study Guide

Content: Exam 3 will cover chapters 5, 6, 7, and 9 of Computer Networks: A Systems Approach by

Peterson and Davie. Material will be drawn from the readings, the textbook, lectures, posted moodle

resources, and labs. Note that chapters 6 - 9 build on chapters 1 – 5, so earlier material that is necessary

for the concepts in chapters 5 - 9 may be covered on the exam. However, the exam will focus on

material since exam 2.

Procedure: The exam will be conducted during class time, starting promptly at the beginning of the hour.

You may use 1 sheet of 8.5” x 11” paper (both sides) of notes during the exam. The exam is closed-book,

closed-notes (other than your 1 sheet), closed-other resources, and closed-calculator. If you need to

perform computations, you do not need to put the result in final form. For example, you need not

multiply out 220. You can leave it as 220 in your solution. Please come to the exam on time.

Helpful Reminders:

1. Label all calculations with units (if appropriate).
2. A bit has the unit of b and a byte has the unit of B. Be careful to use the correct units in your

computations. M and k represent different numbers in the context of bandwidth versus data
size.

Topics: This study guide is not a contract – in other words, the exam may include topics not listed below

and some topics listed below may not be covered on the exam. The following list contains the material

covered since exam 2.

Transport Layer

• Ports

• UDP

• TCP
o Reliability
o Connection state diagram (will be provided with exam if needed)
o Segment format
o Sliding window

▪ Flow control
o Triggering transmissions

▪ Nagle’s algorithm
▪ Silly window syndrome

o Setting timeouts
▪ Original TCP
▪ Karn/Partridge
▪ Jacobseon/Karels

o Timestamps
▪ Wrap-around of segment numbers

o Scaling advertise window size

• Congestion Control

154

o Flows
o Responsibilities (router versus host, reservations versus feedback, window versus rate

based)
o Fairness
o Queuing

▪ FIFO
▪ Round Robin
▪ Fair Queuing
▪ Priority Queuing

o Drop policies
o TCP

▪ Slow start
▪ Additive increase/multiplicative decrease
▪ Fast retransmit (use dacks)
▪ Fast recovery (remove slow start after timeout, so CW goes to half)
▪ TCP Vegas (use RTTs to adjust CW)

o Random early detection (if time)

Compression

• Lossless
o Run Length Encoding
o Differential Pulse Code Modulation
o Delta Encoding
o Dictionary Encoding
o Huffman Encoding

• Lossy
o JPEG
o MPEG

Applications

• SMTP

• HTTP
o Request/reply messages
o Caching

• DNS hierarchy
o DNS name servers (lab 3)
o Resolution process

• P2P Systems
o Structured Overlay
o BitTorrent

• Labs 7, 8, 9 and 10

